Bright-Blood T2-Weighted MRI Has Higher Diagnostic Accuracy Than Dark-Blood Short Tau Inversion Recovery MRI for Detection of Acute Myocardial Infarction and for Assessment of the Ischemic Area at Risk and Myocardial Salvage

Background— T2-Weighted MRI reveals myocardial edema and enables estimation of the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction (MI). We compared the diagnostic accuracy of a new bright-blood T2-weighted with a standard black blood T2-weighted MRI in patients with acute MI. Methods and Results— A breath-hold, bright-blood T2-weighted, Acquisition for Cardiac Unified T2 Edema pulse sequence with normalization for coil sensitivity and a breath-hold T2 dark-blood short tau inversion recovery sequence were used to depict the area at risk in 54 consecutive acute MI patients. Infarct size was measured on gadolinium late contrast enhancement images. Compared with dark-blood T2-weighted MRI, consensus agreements between independent observers for identification of myocardial edema were higher with bright-blood T2-weighted MRI when evaluated per patient (P<0.001) and per segment of left ventricle (P<0.001). Compared with bright-blood T2-weighted MRI, dark-blood T2-weighted MRI underestimated the area at risk compared with infarct size (P<0.001). The 95% limits of agreement for interobserver agreements for the ischemic area at risk and myocardial salvage were wider with dark-blood T2-weighted MRI than with bright-blood T2-weighted MRI. Bright blood enabled more accurate identification of the culprit coronary artery with correct identification in 94% of cases compared with 61% for dark blood (P<0.001). Conclusions— Bright-blood T2-weighted MRI has higher diagnostic accuracy than dark-blood T2-weighted MRI. Additionally, dark-blood T2-weighted MRI may underestimate area at risk and myocardial salvage.

[1]  R. Kim,et al.  Molecular imaging: T2-weighted CMR of the area at risk—a risky business? , 2010, Nature Reviews Cardiology.

[2]  P. Kellman,et al.  Magnetic Resonance Imaging Delineates the Ischemic Area at Risk and Myocardial Salvage in Patients With Acute Myocardial Infarction , 2010, Circulation. Cardiovascular imaging.

[3]  J. McMurray,et al.  Microvascular Obstruction Remains a Portent of Adverse Remodeling in Optimally Treated Patients With Left Ventricular Systolic Dysfunction After Acute Myocardial Infarction , 2010, Circulation. Cardiovascular imaging.

[4]  P. Pibarot,et al.  Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. , 2010, Journal of the American College of Cardiology.

[5]  O. Simonetti,et al.  Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. , 2010, Journal of the American College of Cardiology.

[6]  Matthias G. Friedrich,et al.  Myocardial edema—a new clinical entity? , 2010, Nature Reviews Cardiology.

[7]  G. Schuler,et al.  Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction , 2010, Journal of the American College of Cardiology.

[8]  C. Catalano,et al.  Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. , 2009, Journal of the American College of Cardiology.

[9]  D. O’Regan,et al.  Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention. , 2009, American journal of physiology. Heart and circulatory physiology.

[10]  F. Van de Werf,et al.  Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. , 2009, European heart journal.

[11]  R. Cury,et al.  Cardiac Magnetic Resonance With T2-Weighted Imaging Improves Detection of Patients With Acute Coronary Syndrome in the Emergency Department , 2008, Circulation.

[12]  J. Schulz-Menger,et al.  The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. , 2008, Journal of the American College of Cardiology.

[13]  Peter Kellman,et al.  ACUT2E TSE‐SSFP: A hybrid method for T2‐weighted imaging of edema in the heart , 2008, Magnetic resonance in medicine.

[14]  E. McVeigh,et al.  T2‐prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo , 2007, Magnetic resonance in medicine.

[15]  D. Firmin,et al.  Improved turbo spin‐echo imaging of the heart with motion‐tracking , 2006, Journal of magnetic resonance imaging : JMRI.

[16]  L. Wilkins ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction , 2004 .

[17]  J. Schulz-Menger,et al.  Delayed Enhancement and T2-Weighted Cardiovascular Magnetic Resonance Imaging Differentiate Acute From Chronic Myocardial Infarction , 2004, Circulation.

[18]  E. McVeigh,et al.  Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement † , 2002, Magnetic resonance in medicine.

[19]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[20]  W. Ghali,et al.  Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort. , 2001, American heart journal.

[21]  O. Simonetti,et al.  "Black blood" T2-weighted inversion-recovery MR imaging of the heart. , 1996, Radiology.

[22]  J. Gili,et al.  Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. , 1993, Cardiovascular research.

[23]  G. Lamas,et al.  ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients Wi , 2004, The Canadian journal of cardiology.

[24]  Ken W. Woodhouse,et al.  The Clinical Perspective , 1994 .

[25]  S. Rajagopalan,et al.  Journal of Cardiovascular Magnetic Resonance Open Access T2 Quantification for Improved Detection of Myocardial Edema , 2022 .