Molecular-Beam Epitaxial Growth of HgCdTe

Epitaxial HgCdTe grown by molecular-beam epitaxy (MBE) is the material of choice for advanced infrared (IR) detection and imaging devices. Its bandgap is easily tunable over the entire IR range with only very small changes in lattice constant, offering the possibility of multilayer device structures and thus an unlimited choice of device designs, and it yields devices with quantum efficiencies as high as 0.99. Despite a number of unresolved challenges in achieving its ultimate promise for industrial application, the great achievements in the MBE growth of HgCdTe are made evident by its routine use in the industrial manufacture of focal-plane arrays (FPAs). MBE growth can be continuously monitored in situ by reflection high-energy electron diffraction, spectroscopic ellipsometry (SE), and other characterization tools, providing instantaneous feedback on the influence of growth conditions on film structure. This allows the growth of a large range of unique structures such as superlattices (SLs), quantum well devices, lasers, and advanced design devices such as multicolor and high-operating-temperature IR sensors and focal-plane arrays. This chapter considers the theory and practice of MBE growth of HgCdTe and HgTe/CdTe superlattices and the use of HgCdTe in IR devices, emphasizing such incompletely resolved issues as the choice and preparation of substrates, dislocation reduction, p-doping, and the uses of SE.

[1]  J. Venables Kinetic studies of nucleation and growth at surfaces , 1978 .

[2]  A. Sher,et al.  Hg 1-x Cd x Te: Defect Structure Overview , 1990 .

[3]  J. Garland,et al.  Correlation of arsenic incorporation and its electrical activation in MBE HgCdTe , 2000 .

[4]  Kim,et al.  Nonlinear diffusion in multilayered semiconductor systems. , 1989, Physical review letters.

[5]  G. Jellison Windows in ellipsometry measurements. , 1999, Applied optics.

[6]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[7]  J. S. Blakemore Semiconductor Statistics , 1962 .

[8]  Muren Chu,et al.  Au-doped HgCdTe for infrared detectors and focal plane arrays , 2001, SPIE Optics + Photonics.

[9]  C. Grein,et al.  Monolithically integrated HgCdTe focal plane arrays , 2005 .

[10]  A. Sher,et al.  Amphoteric behavior of arsenic in HgCdTe , 1999 .

[11]  E. A. Patten,et al.  Chemical doping of HgCdTe by molecular‐beam epitaxy , 1990 .

[12]  Heinrich F. Arlinghaus,et al.  Reduction of CdZnTe substrate defects and relation to epitaxial HgCdTe quality , 1996 .

[13]  W. Kern Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology , 1970 .

[14]  L. O. Bubulac,et al.  Origin of void defects in Hg1−xCdxTe grown by molecular beam epitaxy , 1995 .

[15]  Luke J. Mawst,et al.  Experimental test for elastic compliance during growth on glass-bonded compliant substrates , 2000 .

[16]  L. A. Almeida,et al.  Improved morphology and crystalline quality of MBE CdZnTe/Si , 2001 .

[17]  M. Schilfgaarde,et al.  Behavior of p-type dopants in HgCdTe , 1997 .

[18]  M. Schilfgaarde,et al.  HgCdTe status review with emphasis on correlations, native defects and diffusion , 1991 .

[19]  A. A. Studna,et al.  Chemical etching and cleaning procedures for Si, Ge, and some III‐V compound semiconductors , 1981 .

[20]  D. E. Cooper,et al.  p‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy , 1990 .

[21]  Robert W. Collins,et al.  Automatic rotating element ellipsometers: Calibration, operation, and real‐time applications , 1990 .

[22]  I. Bhat,et al.  Growth of high quality CdTe and ZnTe on Si substrates using organometallic vapor phase epitaxy , 1995 .

[23]  Majid Zandian,et al.  Dislocation reduction in HgCdTe on GaAs and Si , 1992 .

[24]  J. Franc,et al.  Chemical polishing of CdZnTe substrates fabricated from crystals grown by the vertical-gradient freezing method , 2006 .

[25]  S. Shin,et al.  P-type doping of double layer mercury cadmium telluride for junction formation , 1995 .

[26]  J. Garland,et al.  Effects of hydrogen on majority carrier transport and minority carrier lifetimes in long wavelength infrared HgCdTe on Si , 2006 .

[27]  J. Garland,et al.  Ellipsometry of rough CdTe(211)B-Ge(211) surfaces grown by molecular beam epitaxy , 2006 .

[28]  A. Madhukar Far from equilibrium vapour phase growth of lattice matched III-V compound semiconductor interfaces: some basic concepts and Monte-Carlo computer simulations , 1983 .

[29]  S. Sivananthan,et al.  New achievements in Hg1−xCdxTe grown by molecular‐beam epitaxy , 1988 .

[30]  H. P. Lee,et al.  Diffuse reflectance spectroscopy measurement of substrate temperature and temperature transient during molecular beam epitaxy and implications for low-temperature III–V epitaxy , 1997 .

[31]  W. J. Choyke,et al.  Characterization of molecular beam epitaxially grown HgCdTe on CdTe and InSb buffer layers , 1986 .

[32]  D. Aspnes,et al.  Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry , 1979 .

[33]  J. Garland,et al.  Arsenic incorporation in MBE grown Hg1−xCdxTe , 1999 .

[34]  A. Willoughby,et al.  Diffusion of gold and mercury self‐diffusion in N‐type Bridgman‐grown Hg1−x CdxTe (x≂0.2) , 1983 .

[36]  J. Dell,et al.  High-resolution X-ray diffraction studies of molecular beam epitaxy-grown HgCdTe heterostructures and CdZnTe substrates , 2005 .

[37]  D. E. Aspnes,et al.  Optical Detection And Minimization Of Surface Overlayers On Semiconductors Using Spectroscopic Ellipsometry , 1981, Advanced Lithography.

[38]  Shuang Zhang,et al.  Nanoheteroepitaxy for the integration of highly mismatched semiconductor materials , 2002 .

[39]  Majid Zandian,et al.  Molecular‐beam epitaxy growth and in situ arsenic doping of p‐on‐n HgCdTe heterojunctions , 1991 .

[40]  M. Groenert,et al.  Influence of Substrate Orientation on the Growth of HgCdTe by Molecular Beam Epitaxy , 2006 .

[41]  Majid Zandian,et al.  Mode of arsenic incorporation in HgCdTe grown by MBE , 1997 .

[42]  H. Schaake Kinetics of activation of group V impurities in Hg1−xCdxTe alloys , 2000 .

[43]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[44]  R. Heckingbottom Thermodynamic aspects of molecular beam epitaxy: High temperature growth in the GaAs/Ga1−xAlxAs system , 1985 .

[45]  J. Schetzina Photoassisted MBE growth of II–VI films and superlattices , 1994 .

[46]  N. Ōtsuka,et al.  Suppression of twin formation in CdTe(111)B epilayers grown by molecular beam epitaxy on misoriented Si(001) , 1995 .

[47]  Nibir K. Dhar,et al.  Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance , 2004 .

[48]  P. W. Norton,et al.  CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe , 1995 .

[49]  Y. H. Chang,et al.  Hydrogen passivation in Cd1−xZnxTe studied by photoluminescence , 1991 .

[50]  N. Giles,et al.  Controlled substitutional doping of CdTe thin films grown by photoassisted molecular‐beam epitaxy , 1987 .

[51]  T. Pearsall,et al.  Precision of noninvasive temperature measurement by diffuse reflectance spectroscopy , 1995 .

[52]  Sivalingam Sivananthan,et al.  High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy , 1997 .

[53]  B. Seraphin Optical Properties of Solids: New Developments , 1976 .

[54]  B. Yang,et al.  Evidence that arsenic is incorporated as As4 molecules in the molecular beam epitaxial growth of Hg1−xCdxTe:As , 1999 .

[55]  J. Reno,et al.  Relation between crystallographic orientation and the condensation coefficients of Hg, Cd, and Te during molecular-beam-epitaxial growth of Hg1−xCdxTe and CdTe , 1986 .

[56]  T. Casselman,et al.  Potential barriers in HgCdTe heterojunctions , 1985 .

[57]  David E. Aspnes,et al.  Minimal-data approaches for determining outer-layer dielectric responses of films from kinetic reflectometric and ellipsometric measurements , 1993 .

[58]  P. I. Tamborenea,et al.  Molecular beam epitaxial growth: simulation and continuum theory☆ , 1992 .

[59]  Vaidya Nathan,et al.  HgCdTe/Si materials for long wavelength infrared detectors , 2004 .

[60]  Wolfgang Braun,et al.  Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth , 1999 .

[61]  Vaidya Nathan,et al.  Near-bandgap infrared absorption properties of HgCdTe , 2004 .

[62]  M. Zandian,et al.  MBE growth of HgCdTe epilayers with reduced visible defect densities: Kinetics considerations and substrate limitations , 2001 .

[63]  Christoph H. Grein,et al.  Performance and reproducibility enhancement of HgCdTe molecular beam epitaxy growth on CdZnTe substrates using interfacial HgTe∕CdTe superlattice layers , 2005 .

[64]  S. Sivananthan,et al.  In-Situ monitoring of temperature and alloy composition of Hg1−xCdxTe using FTIR spectroscopic techniques , 1999 .

[65]  Yoshihiro Miyamoto,et al.  Electrical properties of HgCdTe epilayers doped with silver using an AgNO3 solution , 1998 .

[66]  Y. Wu,et al.  The growth and structure of short period (001) Hg1−xCdxTe‐HgTe superlattices , 1993 .

[67]  R. James,et al.  Material quality characterization of CdZnTe substrates for HgCdTe epitaxy , 2006 .

[68]  Arsenic incorporation during MBE growth of HgCdTe , 1999 .

[69]  Sergey A. Dvoretsky,et al.  Peculiarities of the MBE growth physics and technology of narrow-gap II-VI compounds , 1997 .

[70]  S. Sivananthan,et al.  Arsenic incorporation in HgCdTe grown by molecular beam epitaxy , 1998 .

[71]  Nibir K. Dhar,et al.  Molecular beam epitaxy grown long wavelength infrared HgCdTe on Si detector performance , 2005 .

[72]  C. Johnson,et al.  Recipe to minimize Te precipitation in CdTe and (Cd,Zn)Te crystals , 1992 .

[73]  D. F. Weirauch,et al.  Activation of arsenic as an acceptor in Hg1−xCdxTe under equilibrium conditions , 2002 .

[74]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[75]  S. Sivananthan,et al.  MBE P-on-n Hg1−xCdxTe heterostructure detectors on silicon substrates , 1998 .

[76]  G. Davies,et al.  GROWTH AND DOPING OF GALLIUM ARSENIDE USING MOLECULAR BEAM EPITAXY (MBE): THERMODYNAMIC AND KINETIC ASPECTS , 1983 .

[77]  K. Ploog,et al.  ORIGIN OF ELECTRON DIFFRACTION OSCILLATIONS DURING CRYSTAL GROWTH , 1998 .

[78]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[79]  Sivalingam Sivananthan,et al.  Current status of the growth of HgCdTe by molecular beam epitaxy on (211)B CdZnTe substrates , 1992, Optics & Photonics.

[80]  M. Willander,et al.  Hydrogen passivation of nitrogen acceptors confined in CdZnTe quantum well structures , 2001 .

[81]  Carl Wagner,et al.  Theorie der geordneten Mischphasen. II. , 1931 .

[82]  M. Carmody,et al.  Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers , 2003 .

[83]  L. O. Bubulac,et al.  Ion implanted junction formation in Hg1−xCdxTe , 1987 .

[84]  Rajesh D. Rajavel,et al.  Molecular-beam epitaxial growth of HgCdTe infrared focal-plane arrays on silicon substrates for midwave infrared applications , 1998 .

[85]  F. A. Kröger,et al.  Relations between the Concentrations of Imperfections in Crystalline Solids , 1956 .

[86]  T. Skauli,et al.  Applications of thermodynamical modeling in molecular beam epitaxy of CdxHg1-xTe , 1997 .

[87]  Christoph H. Grein,et al.  Extrinsic p-type doping and analysis of HgCdTe grown by molecular beam epitaxy , 2002, SPIE Optics + Photonics.

[88]  David J. Smith,et al.  Improve molecular beam epitaxy growth of HgCdTe on CdZnTe (211)B substrates using interfacial layers of HgTe∕CdTe superlattices , 2006 .

[89]  J. Faurie Developments and trends in MBE of II VI Hg-based compounds , 1987 .

[90]  Kim,et al.  Optical properties of ZnSe and its modeling. , 1996, Physical review. B, Condensed matter.

[91]  William W. Clark,et al.  Reduced carbon contaminant, low-temperature silicon substrate preparation for , 1999 .

[92]  R Balcerak,et al.  Infrared material requirements for the next generation of systems , 1991 .

[93]  J. Tsao,et al.  Materials Fundamentals of Molecular Beam Epitaxy , 1992 .

[94]  V. G. Remesnik,et al.  The growth of high-quality MCT films by MBE using in-situ ellipsometry , 1994 .

[95]  J. D. Benson,et al.  Automated compositional control of Hg1−xCdxTe during MBE, using in situ spectroscopic ellipsometry , 1998 .

[97]  P. Boieriu,et al.  MBE growth and device processing of MWIR HgCdTe on large area Si substrates , 2001 .

[98]  B. V. Shanabrook,et al.  Large temperature changes induced by molecular beam epitaxial growth on radiatively heated substrates , 1992 .

[99]  S. Shin,et al.  Annealing effect on the P-type carrier concentration in low-temperature processed arsenic-doped HgCdTe , 1993 .

[100]  M. Groenert,et al.  In-situ spectroscopic study of the As and Te on the Si (112) surface for high-quality epitaxial layers , 2006 .

[101]  J. Tissot,et al.  Latest developments in the growth of CdxHg1−xTe and CdTe–HgTe superlattices by molecular beam epitaxy , 1983 .

[102]  N. Ledentsov,et al.  Thermodynamic analysis of segregation effects in MBE of AIII−BV compounds , 1991 .

[103]  J. Reno,et al.  Present status of molecular beam epitaxial growth and properties of HgTe–CdTe superlattices , 1986 .

[104]  J. Derby,et al.  Cadmium zinc telluride substrate growth, characterization, and evaluation , 1999 .

[105]  N. Dhar,et al.  MBE growth of CdSeTe/Si composite substrate for long-wavelength IR HgCdTe applications , 2003 .

[106]  Hee Chul Lee,et al.  Enhancement of the steady state minority carrier lifetime in HgCdTe photodiode using ECR plasma hydrogenation , 1995 .

[107]  S. Sivananthan,et al.  Formation mechanism of crater defects on HgCdTe/CdZnTe (211) B epilayers grown by molecular beam epitaxy , 2003 .

[108]  Choong Ki Kim,et al.  Characteristics of gradually doped LWIR diodes by hydrogenation , 2000 .

[109]  C. Wood RED intensity oscillations during MBE of GaAs , 1981 .

[110]  Donald G. M. Anderson,et al.  Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix , 1994 .

[111]  Kim,et al.  Modeling the optical dielectric function of the alloy system AlxGa1-xAs. , 1993, Physical review. B, Condensed matter.

[112]  S. Ciraci,et al.  Finite temperature studies of Te adsorption on Si(0 0 1) , 2002 .

[113]  A. Cho Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method: The Observation of Surface Structures , 1970 .

[114]  J. G. Broerman,et al.  Effect of annealing on the optical properties of HgTe‐CdTe superlattices , 1988 .

[115]  James C. M. Hwang,et al.  Molecular beam epitaxial growth of Cd1−yZnySexTe1−x on Si(211) , 2004 .

[116]  A. Koukitu,et al.  Thermodynamic analysis of molecular beam epitaxy of II–VI semiconductors , 1986 .

[117]  H. Arlinghaus,et al.  Trace copper measurements and electrical effects in LPE HgCdTe , 1996 .

[118]  Jamie D. Phillips,et al.  Composition control of long wavelength MBE HgCdTe using In-situ spectroscopic ellipsometry , 2001 .

[119]  T. Kang,et al.  Temperature dependence of the optical properties in p-Cd_0.96Zn_0.04Te single crystals , 2001 .

[120]  P. Capper,et al.  Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn)(Te,Se) compounds by chemical analysis , 1996 .

[121]  Charles C. Kim,et al.  Temperature dependence of the optical properties of Hg1−xCdxTe , 1997 .

[122]  S. S. Iyer,et al.  In situ relaxed Si1−xGex epitaxial layers with low threading dislocation densities grown on compliant Si-on-insulator substrates , 1998 .

[123]  Optical approaches to determine near‐surface compositions during epitaxy , 1996 .

[124]  S. Sivananthan,et al.  Accuracy of the in situ determination of the CdZnTe temperature by ellipsometry before the growth of HgCdTe by MBE , 2003 .

[125]  David J. Smith,et al.  Growth of high quality CdTe on Si substrates by molecular beam epitaxy , 1996 .

[126]  A. C. Childs,et al.  Control and growth of middle wave infrared (MWIR) Hg(1−x)CdxTe on Si by molecular beam epitaxy , 2005 .

[128]  Antoni Rogalski,et al.  Infrared Photon Detectors , 1995 .

[129]  I. Bhat,et al.  Application of spectroscopic ellipsometry for real-time control of CdTe and HgCdTe growth in an OMCVD system , 1995 .

[130]  Philip I Cohen,et al.  Damped oscillations in reflection high energy electron diffraction during GaAs MBE , 1983 .

[131]  J. Gailliard A thermodynamical model of molecular beam epitaxy, application to the growth of II VI semiconductors , 1987 .

[132]  John A. Woollam,et al.  In-situ spectroscopic ellipsometry of HgCdTe , 1996 .

[133]  M. C. Chen,et al.  The minority carrier lifetime in doped and undoped p-type Hg0.78Cd0.22Te liquid phase epitaxy films , 1995 .

[134]  Blaine D. Johs Regression calibration method for rotating element ellipsometers , 1993 .

[135]  S. Sivananthan,et al.  Molecular beam epitaxy of alloys and superlattices involving mercury , 1985 .

[136]  L. Salamanca-Riba,et al.  Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates , 1996 .

[137]  J. G. Broerman,et al.  p‐on‐n heterojunctions of (Hg,Cd)Te by molecular‐beam epitaxy: Controlled silver doping and compositional grading , 1988 .

[138]  K. Zanio The effect of interdiffusion on the shape of HgTe/CdTe superlattices , 1986 .

[139]  S. Brueck,et al.  Cadmium telluride growth on patterned substrates for mercury cadmium telluride infrared detectors , 2005 .

[140]  Nibir K. Dhar,et al.  Gold diffusion in mercury cadmium telluride grown by molecular beam epitaxy , 2003, SPIE Optics + Photonics.

[141]  R. Triboulet,et al.  Qualification by optical means of CdTe substrates , 1992 .

[142]  N. Ōtsuka,et al.  Molecular beam epitaxy and characterization of CdTe(211) and CdTe(133) films on GaAs(211)B substrates , 1991 .

[143]  G. Davies,et al.  Germanium doping of gallium arsenide grown by molecular beam epitaxy — Some thermodynamic aspects , 1980 .

[144]  J. Ayers,et al.  Patterned heteroepitaxial processing applied to ZnSe and ZnS0.02Se0.98 on GaAs (001) , 2002 .

[145]  J. Reno,et al.  II–VI semiconductor compounds: New superlattice systems for the future? , 1985 .

[146]  N. Moll,et al.  Formation and Stability of Self-Assembled Coherent Islands in Highly Mismatched Heteroepitaxy , 1999, cond-mat/9905122.

[147]  S. Nee,et al.  Ellipsometric analysis for surface roughness and texture. , 1988, Applied optics.

[148]  J. Jensen,et al.  Molecular-beam epitaxial growth and high-temperature performance of HgCdTe midwave infrared detectors , 2002 .

[149]  J. Bajaj,et al.  HgCdTe on Si: Present status and novel buffer layer concepts , 2003 .

[150]  William A. Radford,et al.  High-quality large-area MBE HgCdTe/Si , 2006 .

[151]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[152]  J. Reno,et al.  Electrical properties of molecular beam epitaxy produced HgCdTe layers doped during growth , 1986 .

[153]  R. E. Bornfreund,et al.  Performance of molecular-beam epitaxy-grown midwave infrared HgCdTe detectors on four-inch Si substrates and the impact of defects , 2003 .

[154]  D. Rajavel,et al.  Molecular‐beam epitaxial growth of CdTe(112) on Si(112) substrates , 1995 .

[155]  M. Ying,et al.  High quality HgCdTe epilayers grown on (211)B GaAs by molecular beam epitaxy , 1995 .

[156]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .

[157]  L. Mohnkern,et al.  Properties of (211)B HgTe–CdTe superlattices grown by photon assisted molecular‐beam epitaxy , 1992 .

[158]  Jun Wu,et al.  As-doping HgCdTe by MBE , 2005, SPIE/COS Photonics Asia.

[159]  A. Waag,et al.  Thermal effects on (100) CdZnTe substrates as studied by x‐ray photoelectron spectroscopy and reflection high energy electron diffraction , 1992 .

[160]  J. Faurie,et al.  Minority‐carrier lifetime in p‐type (111)B HgCdTe grown by molecular‐beam epitaxy , 1990 .

[161]  M. Scheffler,et al.  Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate , 2000 .

[162]  James S. Speck,et al.  Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition , 1998 .

[163]  R. L. Harper,et al.  Arsenic-doped CdTe epilayers grown by photoassisted molecular beam epitaxy , 1989 .

[164]  R. Triboulet,et al.  Substrate issues for the growth of mercury cadmium telluride , 1993 .

[165]  S. Sivananthan,et al.  Carrier recombination in indium‐doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy , 1994 .

[166]  F. Johnson,et al.  Molecular‐beam epitaxial growth of arsenide/phosphide heterostructures using valved, solid group V sources , 1993 .

[167]  S. D. Pearson,et al.  Optimization of the structural properties of Hg1−x CdxTe (x = 0.18−0.30) alloys: Growth and modeling , 1997 .

[168]  R. L. Harper,et al.  p‐type modulation‐doped HgCdTe , 1989 .

[169]  Jasprit Singh,et al.  Use of cation‐stabilized conditions to improve compatibility of CdTe and HgTe molecular beam epitaxy , 1989 .

[170]  Y. Lo,et al.  New approach to grow pseudomorphic structures over the critical thickness , 1991 .

[171]  David R. Rhiger,et al.  Use of ellipsometry to characterize the surface of HgCdTe , 1993 .

[172]  Hoffman,et al.  Electron mobilities and quantum Hall effect in modulation-doped HgTe-CdTe superlattices. , 1991, Physical review. B, Condensed matter.

[173]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[174]  Jamie D. Phillips,et al.  Control of very-long-wavelength infrared HgCdTe detector-cutoff wavelength , 2002 .

[175]  J. Garland,et al.  Arsenic activation in molecular beam epitaxy grown, in situ doped HgCdTe(211) , 2005 .

[176]  O. Gravrand,et al.  Dual-band infrared detectors made on high-quality HgCdTe epilayers grown by molecular beam epitaxy on CdZnTe or CdTe/Ge substrates , 2004 .

[177]  C. Chatillon,et al.  Thermodynamic analysis of molecular beam epitaxy of III–V compounds; Application to the GayIn1−yAs multilayer epitaxy , 1990 .

[179]  Y. Nemirovsky,et al.  The excess carrier lifetime in vacancy‐ and impurity‐doped HgCdTe , 1990 .

[180]  S. Sivananthan,et al.  Heteroepitaxy of CdTe on GaAs and silicon substrates , 1993 .

[181]  A. Million,et al.  CdTe-HgTe multilayers grown by molecular beam epitaxy , 1982 .

[182]  Nibir K. Dhar,et al.  HgCdTe heteroepitaxy on three-inch (112) CdZnTe/Si: Ellipsometric control of substrate temperature , 2000 .

[183]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[184]  J. Benson,et al.  Suppression of strain-induced cross-hatch on molecular beam epitaxy (211)B HgCdTe , 2002 .

[185]  P. Kratzer,et al.  First-principles studies of kinetics in epitaxial growth of III–V semiconductors , 2002 .

[186]  Silviu Velicu,et al.  High-temperature HgCdTe/CdTe/Si infrared photon detectors by MBE , 2001, SPIE Optics + Photonics.

[187]  S. Takeuchi,et al.  Observation of dislocations in cadmium telluride by cathodoluminescence microscopy , 1979 .

[188]  Owen K. Wu,et al.  Growth and properties of In- and As-doped HgCdTe by MBE , 1993 .

[189]  Christian Mailhiot,et al.  Electronic structure of (001)- and (111)-growth-axis semiconductor superlattices , 1987 .

[190]  M. A. Herman Approaches to understanding MBE growth phenomena , 1995 .

[191]  D. Arch,et al.  Layer intermixing in HgTe‐CdTe superlattices , 1986 .

[192]  John R. Arthur Molecular beam epitaxy , 2002 .

[193]  D. Edwall,et al.  p-type arsenic doping of Hg1−xCdxTe by molecular beam epitaxy , 1997 .

[194]  P. M. Raccah,et al.  Line shape of the optical dielectric function , 1988 .

[195]  Antoni Rogalski,et al.  High-Operating-Temperature Infrared Photodetectors , 2007 .

[196]  S. Sivananthan,et al.  Electrical properties of Li-doped Hg(1-x)Cd(x)Te(100) by molecular beam epitaxy , 1987 .

[197]  C. Viswanathan,et al.  Dynamics of arsenic diffusion in metalorganic chemical deposited HgCdTe on GaAs/Si substrates , 1991 .

[198]  J. Harris,et al.  Oscillations in the surface structure of Sn-doped GaAs during growth by MBE , 1981 .

[199]  E. Bauer Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I , 1958 .

[200]  R. Singh,et al.  Molecular beam epitaxy growth of high-quality HgCdTe LWIR layers on polished and repolished CdZnTe substrates , 2005 .

[201]  I. Bhat,et al.  Selective growth of CdTe on Si and GaAs substrates using metalorganic vapor phase epitaxy , 2000 .

[202]  Accurate measurement of composition, carrier concentration, and photoconductive lifetime in Hg1−xCdxTe grown by molecular beam epitaxy , 2006 .

[203]  J. M. Arias,et al.  Modeling of arsenic activation in HgCdTe , 1998 .

[204]  S. Dvoretskii,et al.  Effect of low-temperature annealing on electrical properties of n-HgCdTe , 2004 .

[205]  C. Abernathy Compound semiconductor growth by metallorganic molecular beam epitaxy (MOMBE) , 1995 .

[206]  J. Chu,et al.  Effect of annealing on near-stoichiometric and non-stoichiometric CdZnTe wafers , 1997 .

[207]  K. Spariosu,et al.  Development and fabrication of two-color mid- and short-wavelength infrared simultaneous unipolar multispectral integrated technology focal-plane arrays , 2002 .

[208]  Shan Jiang,et al.  Molecular beam epitaxy of BeTe on vicinal Si(1 0 0) surfaces , 1997 .

[209]  Arvind I. D'Souza,et al.  Au- and Cu-doped HgCdTe HDVIP detectors , 2004, SPIE Defense + Commercial Sensing.

[210]  E. Weiss,et al.  Substrate quality impact on the carrier concentration of undoped annealed HgCdTe LPE layers , 2001 .

[211]  J. Garland,et al.  Temperature-dependent adsorption of Hg on CdTe(211)B studied by spectroscopic ellipsometry , 2003 .

[212]  Nibir K. Dhar,et al.  Hg1-xCdxTe(112) nucleation on silicon composite substrates , 2001, SPIE Optics + Photonics.

[213]  Naoki Oda,et al.  HgCdTe and CdTe(1̄ 1̄ 3̄)B growth on Si(112)5° off by molecular beam epitaxy , 1996 .

[214]  H. F. Schaake,et al.  Etch pit characterization of CdTe and CdZnTe substrates for use in mercury cadmium telluride epitaxy , 1995 .

[215]  J. D. Benson,et al.  Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth , 1998 .

[216]  R. Korenstein,et al.  Growth of (111) CdTe on GaAs/Si and Si substrates for HgCdTe epitaxy , 1992 .

[217]  D. Parent,et al.  Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls , 1998 .

[218]  Hiroyuki Fujiwara,et al.  Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films , 2000 .

[219]  K. Malloy,et al.  Selective growth and associated faceting and lateral overgrowth of GaAs on a nanoscale limited area bounded by a SiO2 mask in molecular beam epitaxy , 2002 .

[220]  Jamie D. Phillips,et al.  Growth of HgCdTe for long-wavelength infrared detectors using automated control from spectroscopic ellipsometry measurements , 2001 .

[221]  S. Sivananthan,et al.  Correlation of CdZnTe(211)B substrate surface morphology and HgCdTe(211)B epilayer defects , 2004 .

[222]  Soe-Mie F. Nee,et al.  Polarization of specular reflection and near-specular scattering by a rough surface. , 1996 .

[223]  J. Massies,et al.  Thermodynamic analysis of the molecular beam epitaxy of AlInAs alloys , 1988 .

[224]  Sivalingam Sivananthan,et al.  Recent progress in the doping of MBE HgCdTe , 1995, Optics & Photonics.

[225]  S. Sivananthan,et al.  Molecular beam epitaxial growth of CdTe and HgCdTe on Si (100) , 1989 .

[226]  A. A. Studna,et al.  Optical Properties of GaAs and Its Electrochemically Grown Anodic Oxide from 1.5 to 6.0 eV , 1981 .

[227]  A. Chen,et al.  MBE growth and characterization of in situ arsenic doped HgCdTe , 1998 .

[228]  Jianrong Yang,et al.  A study of MBE growth and thermal annealing of p-type long wavelength HgCdTe , 1997 .

[229]  S. Sivananthan,et al.  Composition and thickness distribution of HgCdTe molecular beam epitaxy wafers by infrared microscope mapping , 2005 .

[230]  W. Mclevige,et al.  Ellipsometric profiling of HgCdTe heterostructures , 1991 .

[231]  D. Young,et al.  Initial evaluation of a valved Te source for MBE growth of HgCdTe , 1999 .

[232]  Nibir K. Dhar,et al.  The effect of As passivation on the molecular beam epitaxial growth of high-quality single-domain CdTe(111)B on Si(111) substrates , 1999 .

[233]  A. Cho Epitaxial Growth of Gallium Phosphide on Cleaved and Polished (111) Calcium Fluoride , 1970 .

[234]  Superlattices: Progress and prospects , 1986 .

[235]  P. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[236]  S. Sivananthan,et al.  The doping of mercury cadmium telluride grown by molecular‐beam epitaxy , 1988 .

[237]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[238]  J. Bajaj,et al.  Some aspects of Li behavior in ion implanted HgCdTe , 1983 .

[239]  Ian Ferguson,et al.  Real-time monitoring and control of epitaxial semiconductor growth in a production environment by in situ spectroscopic ellipsometry , 1998 .

[240]  S. Sivananthan,et al.  Current status of direct growth of CdTe and HgCdTe on silicon by molecular‐beam epitaxy , 1992 .

[241]  O. Gravrand,et al.  Molecular beam epitaxy growth of HgCdTe on Ge for third-generation infrared detectors , 2006 .

[242]  Joel N. Schulman,et al.  The CdTe/HgTe superlattice: Proposal for a new infrared material , 1979 .

[243]  G. S. Kamath,et al.  CdZnTe on Si(001) and Si(112): Direct MBE Growth for Large‐Area HgCdTe Infrared Focal‐Plane Array Applications , 1994 .

[244]  Renganathan Ashokan,et al.  HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection , 2004 .

[245]  P. K. Liao,et al.  Minority carrier lifetime in p-HgCdTe , 2005 .

[246]  Charles C. Kim,et al.  Determination of accurate critical-point energies, linewidths and line shapes from spectroscopic ellipsometry data , 1993 .

[247]  S. Sivananthan,et al.  Minority carrier lifetime in indium-doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy , 1995 .

[248]  S. Sivananthan,et al.  Electrical properties of intrinsic p‐type shallow levels in HgCdTe grown by molecular‐beam epitaxy in the (111)B orientation , 1989 .

[249]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[251]  A. Uedono,et al.  A Study of Native Defects in Ag-doped HgCdTe by Positron Annihilation , 1997 .

[252]  D. Greve,et al.  Effects of Hydrogen on the Morphology and Electrical Properties of GaN grown by Plasma-assisted Molecular-Beam Epitaxy , 2005 .

[253]  S. Sivananthan,et al.  Arsenic incorporation in HgCdTe grown by molecular beam epitaxy , 1998 .

[254]  B. V. Shanabrook,et al.  Variations in substrate temperature induced by molecular‐beam epitaxial growth on radiatively heated substrates , 1993 .

[255]  A. Million,et al.  Molecular beam epitaxy of II–VI compounds: CdxHg1−xTe , 1981 .

[256]  S. Sivananthan,et al.  Mercury cadmium telluride/tellurium intergrowths in HgCdTe epilayers grown by molecular-beam epitaxy , 2003 .

[257]  Yu. G. Sidorov,et al.  Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy , 2005 .

[258]  Nibir K. Dhar,et al.  LWIR HgCdTe on Si detector performance and analysis , 2006 .

[259]  C. R. Helms,et al.  Simulation of HgTe/CdTe interdiffusion using fundamental point defect mechanisms , 1998 .

[260]  H. F. Schaake,et al.  Kinetics of molecular‐beam epitaxial HgCdTe growth , 1988 .

[261]  J. Bajaj,et al.  MWIR DLPH HgCdTe photodiode performance dependence on substrate material , 1998 .

[262]  J. Faurie Growth and properties of HgTe-CdTe and other Hg-based superlattices , 1986 .

[263]  Sergey A. Dvoretsky,et al.  The controlled growth of high-quality mercury cadmium telluride , 1995 .

[264]  T. Colin,et al.  Influence of Surface Step Density on the Growth of Mercury Cadmium Telluride by Molecular Beam Epitaxy , 1994 .

[265]  Nibir K. Dhar,et al.  CdZnTe heteroepitaxy on 3″ (112) Si: Interface, surface, and layer characteristics , 2000 .

[266]  D. Polla,et al.  Hg vacancy related lifetime in Hg0.68Cd0.32Te by optical modulation spectroscopy , 1983 .

[267]  Yue Chen,et al.  Investigation of the cross-hatch pattern and localized defects in epitaxial HgCdTe , 1998 .

[268]  Antoni Rogalski,et al.  Effect of dislocations on performance of LWIR HgCdTe photodiodes , 2000 .

[269]  B. Feldman,et al.  Controlled p‐type impurity doping of Hg1−xCdxTe during growth by molecular‐beam epitaxy , 1988 .

[270]  J. Rosbeck,et al.  Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors , 1992 .

[271]  Charles C. Kim,et al.  Modeling the optical dielectric function of II‐VI compound CdTe , 1995 .

[272]  P. I. Tamborenea,et al.  Crossover effects in models of kinetic growth with surface diffusion , 1992 .

[273]  B. Feldman,et al.  Impurity doping of HgTe–CdTe superlattices during growth by molecular‐beam epitaxy , 1989 .

[274]  S. Sivananthan,et al.  Electron microscopy of surface-crater defects on HgCdTe/CdZnTe(211)B epilayers grown by molecular-beam epitaxy , 2003 .

[275]  Probing the submonolayer morphology change in epitaxial growth: A simulation study , 2007 .

[276]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[277]  Latika S. R. Becker,et al.  Analysis of the variation in the composition as a function of growth parameters in the MBE growth of indium doped Hg1−xCdxTe , 1998 .

[278]  S. Sivananthan,et al.  Annealing experiments in heavily arsenic-doped (Hg,Cd)Te , 1995 .

[279]  Kim,et al.  Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation. , 1992, Physical review. B, Condensed matter.

[280]  S. Sivananthan,et al.  Structure of CdTe(111)B grown by MBE on misoriented Si(001) , 1993 .

[281]  John,et al.  Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands. , 1989, Physical review. B, Condensed matter.

[282]  G. Jellison,et al.  Two-modulator generalized ellipsometry: theory. , 1997, Applied optics.