Quantum-gas microscope for fermionic atoms.

We realize a quantum-gas microscope for fermionic ^{40}K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.

[1]  John E. Bjorkholm,et al.  Observation of Focusing of Neutral Atoms by the Dipole Forces of Resonance-Radiation Pressure , 1978 .

[2]  Immanuel Bloch,et al.  The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition , 2012, Nature.

[3]  Wolfgang Ketterle,et al.  Making, probing and understanding ultracold Fermi gases , 2008, 0801.2500.

[4]  Bose-fermi mixtures in a three-dimensional optical lattice. , 2006, Physical review letters.

[5]  W. Ketterle,et al.  Condensation of pairs of fermionic atoms near a Feshbach resonance. , 2004, Physical review letters.

[6]  M. Prentiss,et al.  Atomic-density-dependent losses in an optical trap. , 1988, Optics letters.

[7]  Atomic, molecular, and optical physics : electromagnetic radiation , 1997 .

[8]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[9]  W. Pauli The Connection Between Spin and Statistics , 1940 .

[10]  戴 光曦,et al.  核素图册 = Chart of the nuclides , 1987 .

[11]  T. Esslinger Fermi-Hubbard Physics with Atoms in an Optical Lattice , 2010, 1007.0012.

[12]  W. Wing On neutral particle trapping in quasistatic electromagnetic fields , 1984 .

[13]  J. H. Thomas,et al.  Handbook of Vacuum Science and Technology , 1997 .

[14]  N. Shirato Colossal Magnetoresistance , 2010 .

[15]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[16]  W. Ketterle,et al.  Making, probing and understanding Bose-Einstein condensates , 1999, cond-mat/9904034.

[17]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[18]  D. Weiss,et al.  Imaging single atoms in a three dimensional array , 2007 .

[19]  R. Duine,et al.  Achieving the Néel state in an optical lattice , 2007, 0711.3425.

[20]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[21]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[22]  C. Ospelkaus,et al.  Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. , 2006, Physical review letters.

[23]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[24]  V. Letokhov Laser Control of Atoms and Molecules , 2012 .

[25]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[26]  S. Will Interacting bosons and fermions in three-dimensional optical lattice potentials : from atom optics to quantum simulation , 2011 .

[27]  S. Fujimoto,et al.  Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. , 2009, Physical review letters.

[28]  D. Stamper-Kurn Peeking and poking at a new quantum fluid: Studies of gaseous Bose-Einstein condensates in magnetic and optical traps , 2000 .

[29]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[30]  P. Hariharan Basics of Interferometry , 2006 .

[31]  R. Feynman Simulating physics with computers , 1999 .

[32]  D. Pritchard Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy , 1983 .

[33]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[34]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[35]  Fiftyfold improvement in the number of quantum degenerate fermionic atoms. , 2003, Physical review letters.

[36]  D Meschede,et al.  Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. , 2008, Physical review letters.

[37]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[38]  Metcalf,et al.  Magnetostatic trapping fields for neutral atoms. , 1987, Physical review. A, General physics.

[39]  T. Corcovilos,et al.  Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering , 2009, 0910.2450.

[40]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[41]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[42]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[43]  P. Ahmadi,et al.  Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea , 2011, 1103.4630.

[44]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[45]  Chu,et al.  Trapping of neutral sodium atoms with radiation pressure. , 1987, Physical review letters.

[46]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[47]  Chu,et al.  Experimental observation of optically trapped atoms. , 1986, Physical review letters.

[48]  G. Kirchhoff,et al.  Ueber die Fraunhofer'schen Linien , 1860 .

[49]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[50]  Pritchard,et al.  High densities of cold atoms in a dark spontaneous-force optical trap. , 1993, Physical review letters.

[51]  C. Stan Experiments with Interacting Bose and Fermi Gases , 2005 .

[52]  S. Falke,et al.  Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy , 2008, 0804.2949.

[53]  T. Scheike,et al.  Can Doping Graphite Trigger Room Temperature Superconductivity? Evidence for Granular High‐Temperature Superconductivity in Water‐Treated Graphite Powder , 2012, Advanced materials.

[54]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[55]  Chuanwei Zhang,et al.  px+ipy superfluid from s-wave interactions of fermionic cold atoms. , 2008, Physical review letters.

[56]  W. Ketterle,et al.  Feshbach Resonances in Fermionic Lithium-6 , 2004, cond-mat/0407373.

[57]  S. Jochim,et al.  Bose-Einstein Condensation of Molecules , 2003, Science.

[58]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[59]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[60]  W. Bakr Microscopic Studies of Quantum Phase Transitions in Optical Lattices , 2011 .

[61]  D. Jin,et al.  Onset of fermi degeneracy in a trapped atomic Gas , 1999, Science.

[62]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[63]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[64]  S. Jochim,et al.  Deterministic Preparation of a Tunable Few-Fermion System , 2011, Science.

[65]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[67]  Markus Greiner,et al.  Emergence of a molecular Bose–Einstein condensate from a Fermi gas , 2003, Nature.

[68]  P. Ahmadi,et al.  Quantum degenerate Bose-Fermi mixture of chemically different atomic species with widely tunable interactions , 2011, 1110.4552.

[69]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[70]  Walker,et al.  Collective behavior of optically trapped neutral atoms. , 1990, Physical review letters.

[71]  James Clerk Maxwell Illustrations of the Dynamical Theory of Gases , 1860 .

[72]  C. cohen-tannoudji,et al.  Advances in Atomic Physics: An Overview , 2011 .

[73]  Andrews,et al.  Evaporative cooling of sodium atoms. , 1995, Physical review letters.

[74]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[75]  M. Greiner,et al.  Orbital excitation blockade and algorithmic cooling in quantum gases , 2011, Nature.

[76]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[77]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[78]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[79]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[80]  Michael Köhl,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2005, Physical review letters.

[81]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[82]  A. Chikkatur Colliding and Moving Bose-Einstein Condensates: Studies of superfluidity and optical tweezers for condensate transport , 2002 .

[83]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[84]  T. Hänsch,et al.  Magnetic transport of trapped cold atoms over a large distance , 2001 .

[85]  D. Stamper-Kurn,et al.  Excitation of Phonons in a Bose-Einstein Condensate by Light Scattering , 1999, cond-mat/9906035.

[86]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[87]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[88]  Andrews,et al.  Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap. , 1996, Physical review letters.

[89]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[90]  W. Bakr,et al.  Towards a quantum gas microscope for fermionic atoms , 2012 .

[91]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[92]  J. Cirac,et al.  High-temperature superfluidity of fermionic atoms in optical lattices. , 2002, Physical review letters.

[93]  Efficient production of large K39 Bose-Einstein condensates , 2010, 1010.3739.

[94]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[95]  C. Weitenberg Single-Atom Resolved Imaging and Manipulation in an Atomic Mott Insulator , 2011 .

[96]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[97]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[98]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[99]  S. Chu,et al.  Degenerate Raman Sideband Cooling of Trapped Cesium Atoms at Very High Atomic Densities , 1998 .

[100]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[101]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[102]  W. Phillips,et al.  Laser Production of a Very Slow Monoenergetic Atomic Beam , 1982 .

[103]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[104]  W. Ketterle,et al.  Multiple species atom source for laser-cooling experiments , 2005, physics/0503192.

[105]  Pascal Elleaume,et al.  Computing 3D magnetic fields from insertion devices , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[106]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[107]  Charles H. Townes,et al.  Stark Effect in Rapidly Varying Fields , 1955 .

[108]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[109]  Condensed Matter Physics With Light And Atoms: Strongly Correlated Cold Fermions in Optical Lattices , 2007, cond-mat/0702122.

[110]  K. Jousten,et al.  Handbook of vacuum technology , 2008 .

[111]  A. Georges,et al.  Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. , 2005, Physical review letters.

[112]  H. L. Stormer,et al.  Nobel Lecture: The fractional quantum Hall effect , 1999 .

[113]  M. Greiner Ultracold quantum gases in three-dimensional optical lattice potentials , 2003 .

[114]  C. cohen-tannoudji Manipulating atoms with photons , 1998 .

[115]  Alexander E. Kaplan,et al.  Optical physics (A) , 1986 .

[116]  Theodor W. Hänsch,et al.  A compact grating-stabilized diode laser system for atomic physics , 1995 .

[117]  Dallin S. Durfee,et al.  Propagation of Sound in a Bose-Einstein Condensate , 1997 .

[118]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[119]  d-Wave resonating valence bond states of fermionic atoms in optical lattices. , 2005, Physical review letters.

[120]  Jun Ye,et al.  Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. , 2011, Physical review letters.

[121]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[122]  Harald Ibach,et al.  Solid-State Physics: An Introduction to Principles of Materials Science , 2002 .

[123]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.