Molecular basis for spirocycle formation in the paraherquamide biosynthetic pathway.

The paraherquamides are potent anthelmintic natural products with complex heptacyclic scaffolds. One key feature of these molecules is the spiro-oxindole moiety that lends a strained three-dimensional architecture to these structures. The flavin monooxygenase PhqK was found to catalyze spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G. Two new paraherquamides (K and L) were isolated from a ΔphqK strain of Penicillium simplicissimum, and subsequent enzymatic reactions with these compounds generated two additional metabolites paraherquamides M and N. Crystal structures of PhqK in complex with various substrates provided a foundation for mechanistic analyses and computational studies. While it is evident that PhqK can react with various substrates, reaction kinetics and molecular dynamics simulations indicated that the dioxepin-containing paraherquamide L was the favored substrate. Through this effort, we have elucidated a key step in the biosynthesis of the paraherquamides, and provided a rationale for the selective spirocyclization of these powerful anthelmintic agents.

[1]  K. Houk,et al.  Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase , 2019, Nature Chemistry.

[2]  Robert M. Williams,et al.  Cofactor-Independent Pinacolase Directs Non-Diels-Alderase Biogenesis of the Brevianamides , 2019 .

[3]  R. Sarpong,et al.  Function and Structure of MalA/MalA', Iterative Halogenases for Late-Stage C-H Functionalization of Indole Alkaloids. , 2017, Journal of the American Chemical Society.

[4]  Janet M. Thornton,et al.  Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases , 2016, Journal of molecular biology.

[5]  Wei Zhang,et al.  Dearomatization of Indoles via a Phenol-Directed Vanadium-Catalyzed Asymmetric Epoxidation and Ring-Opening Cascade. , 2016 .

[6]  Sabrina Eberhart,et al.  Aziridines And Epoxides In Organic Synthesis , 2016 .

[7]  Wei Zhang,et al.  Dearomatization of Indoles via a Phenol‐Directed Vanadium‐ Catalyzed Asymmetric Epoxidation and Ring‐Opening Cascade , 2015 .

[8]  Suresh B. Singh,et al.  The use of spirocyclic scaffolds in drug discovery. , 2014, Bioorganic & medicinal chemistry letters.

[9]  Scott J. Miller,et al.  Total synthesis and isolation of citrinalin and cyclopiamine congeners , 2014, Nature.

[10]  H. Moriya,et al.  Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. , 2013, Nature chemical biology.

[11]  Ralph A. Cacho,et al.  Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. , 2013, ACS chemical biology.

[12]  K. Hicks,et al.  Structural and mechanistic studies of HpxO, a novel flavin adenine dinucleotide-dependent urate oxidase from Klebsiella pneumoniae. , 2013, Biochemistry.

[13]  Robert M. Williams,et al.  Biochemical characterization of NotB as an FAD-dependent oxidase in the biosynthesis of notoamide indole alkaloids. , 2012, Journal of the American Chemical Society.

[14]  N. Kelleher,et al.  Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal fumiquinazoline C by the flavoenzyme Af12070 from Aspergillus fumigatus. , 2011, Biochemistry.

[15]  Steven T. Loveridge,et al.  Utilizing DART mass spectrometry to pinpoint halogenated metabolites from a marine invertebrate-derived fungus. , 2011, The Journal of organic chemistry.

[16]  Scott J. Miller,et al.  Chemoselective and enantioselective oxidation of indoles employing aspartyl peptide catalysts. , 2011, Journal of the American Chemical Society.

[17]  A. Hodge,et al.  Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand , 2010, New Zealand veterinary journal.

[18]  Robert M. Williams,et al.  Studies on Paraherquamide Biosynthesis: Synthesis of Deuterium-Labeled 7-Hydroxy-Pre-Paraherquamide, a Putative Precursor of Paraherquamides A, E & F. , 2009, Tetrahedron.

[19]  Robert M. Williams,et al.  Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from Aspergillus versicolor NRRL 35600. , 2008, Angewandte Chemie.

[20]  Robert M. Williams,et al.  Notoamides A—D: Prenylated Indole Alkaloids Isolated from a Marine-Derived Fungus, Aspergillus sp. , 2007 .

[21]  Robert M. Williams,et al.  Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. , 2007, Journal of the American Chemical Society.

[22]  Robert M. Williams,et al.  Notoamides A–D: Prenylated Indole Alkaloids Isolated from a Marine‐Derived Fungus, Aspergillus sp. , 2007 .

[23]  Robert M. Williams,et al.  A concise total synthesis of the notoamides C and D. , 2007, Angewandte Chemie.

[24]  Robert M. Williams,et al.  A concise, biomimetic total synthesis of stephacidin A and notoamide B. , 2007, Angewandte Chemie.

[25]  D. Sherman,et al.  The Biosynthesis of Epoxides , 2006 .

[26]  M. P. López-Gresa,et al.  Insecticidal activity of Paraherquamides, including paraherquamide H and paraherquamide I, two new alkaloids isolated from Penicillium cluniae. , 2006, Journal of agricultural and food chemistry.

[27]  R. Mata,et al.  Malbrancheamide, a new calmodulin inhibitor from the fungus Malbranchea aurantiaca , 2006 .

[28]  B. Entsch,et al.  Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. , 2005, Biochemical and biophysical research communications.

[29]  B. Entsch,et al.  Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. , 2005, Archives of biochemistry and biophysics.

[30]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[31]  Robert M. Williams,et al.  Studies on the Biosynthesis of Paraherquamide. Construction of the Amino Acid Framework. , 2001 .

[32]  Robert M. Williams,et al.  Studies on the Biosynthesis of Paraherquamide: Synthesis and Incorporation of a Hexacyclic Indole Derivative as an Advanced Metabolite , 2001 .

[33]  R. Williams,et al.  Studies on the biosynthesis of paraherquamide: concerning the mechanism of the oxidative cyclization of L-isoleucine to beta-methylproline. , 2001, Journal of the American Chemical Society.

[34]  J. F. Sanz-Cervera,et al.  Reverse Prenyl Transferases Exhibit Poor Facial Discrimination in the Biosynthesis of Paraherquamide A, Brevianamide A, and Austamide , 2000 .

[35]  J. Gloer,et al.  Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. , 1996, Journal of natural products.

[36]  Robert M. Williams,et al.  Studies on the biosynthesis of paraherquamide A. Origin of the {beta}-methylproline ring , 1996 .

[37]  K. Gomi,et al.  Molecular Cloning and Heterologous Expression of the Gene Encoding Dihydrogeodin Oxidase, a Multicopper Blue Enzyme from Aspergillus terreus(*) , 1995, The Journal of Biological Chemistry.

[38]  J. Everett,et al.  Further novel metabolites of the paraherquamide family. , 1993, The Journal of antibiotics.

[39]  J. Schaeffer,et al.  Chemical modification of paraherquamide. 3. Vinyl ether modified analogs , 1991 .

[40]  J. Schaeffer,et al.  Chemical Modification of Paraherquamide. 4. 1-N-substituted analogs , 1991 .

[41]  J. Schaeffer,et al.  Novel antinematodal and antiparasitic agents from Penicillium charlesii. I. Fermentation, isolation and biological activity. , 1990, The Journal of antibiotics.

[42]  J. Schaeffer,et al.  Chemical modification of paraherquamide. 2. Replacement of the C-14 methyl group , 1990 .

[43]  J. Springer,et al.  Chemical modification of paraherquamide. 1. Unusual reactions and absolute stereochemistry , 1989 .

[44]  E. Okuyama,et al.  The structure of paraherquamide, a toxic metabolite from penicillium paraherquei , 1981 .

[45]  T. Prangé,et al.  Isolation and structure (X-ray analysis) of marcfortine A, a new alkaloid from Penicillium roqueforti , 1980 .

[46]  A. Birch,et al.  Studies in relation to biosynthesis. XLII. The structural elucidation and some aspects of the biosynthesis of the brevianamides-A and -E. , 1970, Tetrahedron.

[47]  A. Birch,et al.  The brevianamides: a new class of fungal alkaloid , 1969 .