Scanning strategies for imaging arrays

Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage - all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

[1]  L. Reichertz,et al.  Principles of the data reduction and first results of the fastscanning method for (sub)millimeter astronomy , 2002 .

[2]  Dominic J. Benford,et al.  GISMO: a 2-millimeter bolometer camera for the IRAM 30 m telescope , 2005, SPIE Astronomical Telescopes + Instrumentation.

[3]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[4]  G. Siringo,et al.  APEX: the Atacama Pathfinder EXperiment , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  Peter Ade,et al.  Herschel-SPIRE: design, performance, and scientific capabilities , 2006, SPIE Astronomical Telescopes + Instrumentation.

[6]  Satoshi Yamamoto,et al.  The Atacama Submillimeter Telescope Experiment (ASTE) , 2004, SPIE Astronomical Telescopes + Instrumentation.

[7]  L. Reichertz,et al.  The fastscanning observing technique for millimeter and submillimeter astronomy , 2001 .

[8]  J. Beeman,et al.  The Large APEX BOlometer CAmera LABOCA , 2009, 0903.1354.

[9]  D. T. Emerson,et al.  The reduction of scanning noise in raster scanned data , 1988 .

[10]  Max Tegmark,et al.  CMB mapping experiments: a designer's guide , 1997 .

[11]  Rudolf S. Le Poole,et al.  DREAM: Dutch real-time acquisition mode for SCUBA , 1998 .

[12]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  Hiroshige Yoshida,et al.  SHARC II: a Caltech submillimeter observatory facility camera with 384 pixels , 2003, SPIE Astronomical Telescopes + Instrumentation.

[14]  A. Kovacs,et al.  CRUSH: fast and scalable data reduction for imaging arrays , 2008, Astronomical Telescopes + Instrumentation.

[15]  Matthew Joseph Griffin,et al.  Determining the optimum scan map strategy for Herschel-SPIRE using the SPIRE photometer simulator , 2007 .

[16]  O. Boulade,et al.  ArTeMiS: filled bolometer arrays for next generation sub-mm telescopes , 2006, SPIE Astronomical Telescopes + Instrumentation.

[17]  C. L. Bennett,et al.  Producing Megapixel Cosmic Microwave Background Maps from Differential Radiometer Data , 1995 .

[18]  Attila Kov SHARC-2 350 m Observations of Distant Submillimeter-Selected Galaxies and Techniques for the Optimal Analysis and Observing of Weak Signals , 2006 .