Tetrabutylammonium Bromide Functionalized Ti3C2Tx MXene as Versatile Cathode Buffer Layer for Efficient and Stable Inverted Perovskite Solar Cells

[1]  Qing Li,et al.  Halide Diffusion Equilibrium and Its Impact on Efficiency Evolution of Perovskite Solar Cells , 2022, Advanced Energy Materials.

[2]  C. Brabec,et al.  Dopant‐Free Bithiophene‐Imide‐Based Polymeric Hole‐Transporting Materials for Efficient and Stable Perovskite Solar Cells , 2022, Advanced materials.

[3]  Tao-tao Zhan,et al.  Annealing-Insensitive, Alcohol-Processed MoOx Hole Transport Layer for Universally Enabling High-Performance Conventional and Inverted Organic Solar Cells. , 2022, ACS applied materials & interfaces.

[4]  Xiaotian Hu,et al.  Bulk Restructure of Perovskite Films via Surface Passivation for High‐Performance Solar Cells , 2022, Advanced Energy Materials.

[5]  Li Yang,et al.  Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells , 2022, Cell Reports Physical Science.

[6]  J. Xiong,et al.  Perovskite Films Treated with Polyvinyl Pyrrolidone for High-Performance Inverted Perovskite Solar Cells , 2022, ACS Applied Energy Materials.

[7]  J. Brédas,et al.  Engineering Surface Orientations for Efficient and Stable Hybrid Perovskite Single-Crystal Solar Cells , 2022, ACS Energy Letters.

[8]  Huangzhong Yu,et al.  Amino‐Functionalized Niobium‐Carbide MXene Serving as Electron Transport Layer and Perovskite Additive for the Preparation of High‐Performance and Stable Methylammonium‐Free Perovskite Solar Cells , 2022, Advanced Functional Materials.

[9]  J. Shim,et al.  2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review , 2022, Advanced science.

[10]  J. Xiong,et al.  Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells , 2022, Chemical Engineering Journal.

[11]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[12]  P. N. Samanta,et al.  Enhanced Perovskite Solar Cell Performance via 2-Amino-5-iodobenzoic Acid Passivation. , 2022, ACS applied materials & interfaces.

[13]  Z. Wang,et al.  Ti3C2Tx MXene for organic/perovskite optoelectronic devices , 2021, Journal of Central South University.

[14]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[15]  G. Hill,et al.  Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules , 2021, ACS Applied Energy Materials.

[16]  J. Xiong,et al.  Multifunctional passivation strategy based on tetraoctylammonium bromide for efficient inverted perovskite solar cells , 2021 .

[17]  W. Hu,et al.  2D MXene–Molecular Hybrid Additive for High‐Performance Ambipolar Polymer Field‐Effect Transistors and Logic Gates , 2021, Advanced materials.

[18]  Zhongmin Wang,et al.  Cross-Linkable and Alcohol-Soluble Pyridine-Incorporated Polyfluorene Derivative as a Cathode Interface Layer for High-Efficiency and Stable Organic Solar Cells. , 2021, ACS applied materials & interfaces.

[19]  Hui Li,et al.  High Concentration of Ti3C2Tx MXene in Organic Solvent. , 2021, ACS nano.

[20]  D. He,et al.  MXenes for Solar Cells , 2021, Nano-micro letters.

[21]  Yue‐Min Xie,et al.  D-A-π-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells , 2021 .

[22]  Yanlin Song,et al.  Bio-inspired vertebral design for scalable and flexible perovskite solar cells , 2020, Nature Communications.

[23]  C. Brabec,et al.  Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells , 2020, Advanced materials.

[24]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[25]  Y. Gogotsi,et al.  Surface‐Modified Metallic Ti3C2Tx MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells , 2019, Advanced Functional Materials.

[26]  Zhen He,et al.  The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells , 2019, Solar Energy.

[27]  Bo Li,et al.  Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability , 2019, Advanced Optical Materials.

[28]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[29]  Zhenwei Wang,et al.  Oxide Thin‐Film Electronics using All‐MXene Electrical Contacts , 2018, Advanced materials.

[30]  Shihe Yang,et al.  Interface Engineering for Highly Efficient and Stable Planar p‐i‐n Perovskite Solar Cells , 2018 .

[31]  Jongmin Choi,et al.  Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%) , 2017 .

[32]  Francesco Martellotta,et al.  Energetic and visual comfort implications of using perovskite-based building-integrated photovoltaic glazings , 2017 .

[33]  L. Cinà,et al.  Few‐Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells , 2016 .

[34]  Yang-Xin Yu,et al.  Prediction of Mobility, Enhanced Storage Capacity, and Volume Change during Sodiation on Interlayer-Expanded Functionalized Ti3C2 MXene Anode Materials for Sodium-Ion Batteries , 2016 .

[35]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[36]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.