Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydrogenation of nitroarenes

[1]  Tao Zhang,et al.  Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst , 2019, Nature Communications.

[2]  N. López,et al.  Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts , 2019, Nature Materials.

[3]  B. Puértolas,et al.  Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation , 2019, Nature Communications.

[4]  Duncan N. Johnstone,et al.  Atom-by-Atom Resolution of Structure-Function Relations over Low-Nuclearity Metal Catalysts. , 2019, Angewandte Chemie.

[5]  P. Sautet,et al.  Atomically Dispersed Pt1-Polyoxometalate Catalysts: How Does Metal-Support Interaction Affect Stability and Hydrogenation Activity? , 2019, Journal of the American Chemical Society.

[6]  S. Mitchell,et al.  The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts. , 2018, Angewandte Chemie.

[7]  Yadong Li,et al.  Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms , 2018, Nature Catalysis.

[8]  N. Yan,et al.  Harnessing the Wisdom in Colloidal Chemistry to Make Stable Single‐Atom Catalysts , 2018, Advanced materials.

[9]  P. Midgley,et al.  A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling , 2018, Nature Nanotechnology.

[10]  Tao Zhang,et al.  A Durable Nickel Single-Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. , 2018, Angewandte Chemie.

[11]  Tao Zhang,et al.  Heterogeneous single-atom catalysis , 2018, Nature Reviews Chemistry.

[12]  Yong Wang,et al.  Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation , 2017, Science.

[13]  Hideo Hosono,et al.  Copper-Based Intermetallic Electride Catalyst for Chemoselective Hydrogenation Reactions. , 2017, Journal of the American Chemical Society.

[14]  Xiaoqing Pan,et al.  Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2. , 2017, Journal of the American Chemical Society.

[15]  H. Hosono,et al.  Chlorine‐Tolerant Ruthenium Catalyst Derived Using the Unique Anion‐Exchange Properties of 12 CaO⋅7 Al2O3 for Ammonia Synthesis , 2017 .

[16]  Bin Zhang,et al.  Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation , 2017, Nature Communications.

[17]  Yadong Li,et al.  Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. , 2017, Angewandte Chemie.

[18]  H. Hosono,et al.  Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst , 2017 .

[19]  Jinghua Guo,et al.  Explaining the Size Dependence in Platinum-Nanoparticle-Catalyzed Hydrogenation Reactions. , 2016, Angewandte Chemie.

[20]  R. Li,et al.  Platinum single-atom and cluster catalysis of the hydrogen evolution reaction , 2016, Nature Communications.

[21]  Xiaozhi Lim The new breed of cutting-edge catalysts , 2016, Nature.

[22]  Hiroyuki Asakura,et al.  Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. , 2016, Angewandte Chemie.

[23]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[24]  H. Hosono,et al.  Electronic interactions between a stable electride and a nano-alloy control the chemoselective reduction reaction , 2016, Chemical science.

[25]  L. Gu,et al.  Photochemical route for synthesizing atomically dispersed palladium catalysts , 2016, Science.

[26]  F. Negreiros,et al.  Creating single-atom Pt-ceria catalysts by surface step decoration , 2016, Nature Communications.

[27]  Sai Zhang,et al.  High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes. , 2016, Journal of the American Chemical Society.

[28]  M. Antonietti,et al.  A stable single-site palladium catalyst for hydrogenations. , 2015, Angewandte Chemie.

[29]  Javier Pérez‐Ramírez,et al.  Ein stabiler “Single-site”-Palladiumkatalysator für Hydrierungen , 2015 .

[30]  Junjie Li,et al.  Single-Atom Pd₁/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene. , 2015, Journal of the American Chemical Society.

[31]  N. López,et al.  Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics , 2015 .

[32]  Xiaofeng Yang,et al.  FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes , 2014, Nature Communications.

[33]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[34]  H. Hosono,et al.  NH(2-) dianion entrapped in a nanoporous 12CaO·7Al2O3 crystal by ammonothermal treatment: reaction pathways, dynamics, and chemical stability. , 2014, Journal of the American Chemical Society.

[35]  H. Hosono,et al.  Highly Dispersed Ru on Electride [Ca24Al28O64]4+(e–)4 as a Catalyst for Ammonia Synthesis , 2014 .

[36]  M. Beller,et al.  Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines , 2013, Science.

[37]  H. Hosono,et al.  Activation and splitting of carbon dioxide on the surface of an inorganic electride material , 2013, Nature Communications.

[38]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[39]  Jianping Xiao,et al.  Theoretical Insights into CO2 Activation and Reduction on the Ag(111) Monolayer Supported on a ZnO(0001) Substrate , 2013 .

[40]  N. Browning,et al.  A "smart" catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. , 2012, Angewandte Chemie.

[41]  J. Pérez‐Ramírez,et al.  Promotional Effect of Ni in the Selective Gas‐Phase Hydrogenation of Chloronitrobenzene over Cu‐based Catalysts , 2012 .

[42]  K. Jitsukawa,et al.  Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. , 2012, Angewandte Chemie.

[43]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[44]  H. Hosono,et al.  Models of stoichiometric and oxygen-deficient surfaces of subnanoporous 12CaO·7Al2O3 , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  H. Hosono,et al.  Surface of room-temperature-stable electride [Ca24Al28O64]4+(e-)4: preparation and its characterization by atomic-resolution scanning tunneling microscopy. , 2011, ACS nano.

[46]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[47]  J. W. Elam,et al.  Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects , 2010, Science.

[48]  K. Shimizu,et al.  Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics , 2010 .

[49]  R. Nuzzo,et al.  The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3. , 2009, Journal of the American Chemical Society.

[50]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  T. Kamiya,et al.  Work Function of a Room‐Temperature, Stable Electride [Ca24Al28O64]4+(e–)4 , 2007 .

[52]  H. Hosono,et al.  Superconductivity in an inorganic electride 12CaO x 7Al2O3:e-. , 2007, Journal of the American Chemical Society.

[53]  A. Corma,et al.  Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts , 2006, Science.

[54]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[55]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-). , 2003 .

[56]  T. Kamiya,et al.  Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor , 2002, Nature.

[57]  H. Hosono,et al.  Microporous Crystal 12CaO·7Al2O3 Encaging Abundant O- Radicals , 2002 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  H. Hosono,et al.  Occurrence of superoxide radical ion in crystalline calcium aluminate 12CaO.7Al2O3 prepared via solid-state reactions , 1987 .

[61]  Raul Arenal,et al.  Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. , 2017, Nature materials.

[62]  G. Stucky,et al.  Supplementary Material for Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts , 2015 .

[63]  张涛,et al.  Single-atom catalysis of CO oxidation using Pt1 FeOx , 2011 .

[64]  Lunxiang Yin,et al.  Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. , 2007, Chemical reviews.