Strong solutions of non-colliding particle systems

We study systems of stochastic differential equations describing positions $x_1,x_2,\ldots,x_p$ of $p$ ordered particles, with inter-particles repulsions of the form $\displaystyle{\frac{H_{ij}(x_i,x_j)}{x_i-x_j}}$. We show the existence of strong and pathwise unique non-colliding solutions of the system with a colliding initial point $x_1(0)\leq \ldots\leq x_p(0)$ in the whole generality, under natural assumptions on the coefficients of the equations.

[1]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[2]  P. Graczyk,et al.  Multidimensional Yamada-Watanabe theorem and its applications , 2011 .

[3]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[4]  P. Forrester Log-Gases and Random Matrices , 2010 .

[5]  Boundary behavior of a constrained Brownian motion between reflecting-repellent walls , 2009, 0910.1820.

[6]  M. Vares,et al.  HYDRODYNAMICS OF A ONE DIMENSIONAL NEAREST NEIGHBOR MODEL , 1985 .

[7]  Bruno Schapira The Heckman–Opdam Markov processes , 2006 .

[8]  Oliver Pfaffel Wishart Processes , 2012, 1201.3256.

[9]  O. Chybiryakov Skew-product representations of multidimensional Dunkl Markov processes , 2008, 0808.3033.

[10]  Marie-France Bru,et al.  Diffusions of perturbed principal component analysis , 1989 .

[11]  S. Łojasiewicz Introduction to Complex Analytic Geometry , 1991 .

[12]  M. Katori,et al.  Noncolliding processes, matrix-valued processes and determinantal processes , 2010, 1005.0533.

[13]  L. Rogers,et al.  Interacting Brownian particles and the Wigner law , 1993 .

[14]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[15]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[16]  Radial Dunkl processes: Existence, uniqueness and hitting time , 2009 .

[17]  Neil O'Connell,et al.  Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes , 2001 .

[18]  Emmanuel Cépa,et al.  Diffusing particles with electrostatic repulsion , 1997 .

[19]  M. Katori,et al.  Noncolliding Squared Bessel Processes , 2010, 1008.0144.

[20]  Emmanuel Cépa,et al.  BROWNIAN PARTICLES WITH ELECTROSTATIC REPULSION ON THE CIRCLE: DYSON'S MODEL FOR UNITARY RANDOM MATRICES REVISITED , 2001 .

[21]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[22]  M. Yor,et al.  Harmonic & stochastic analysis of Dunkl processes , 2008 .