Emerging synergy between nanotechnology and implantable biosensors: a review.

The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed.

[1]  F Moussy,et al.  In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. , 2002, Journal of biomedical materials research.

[2]  G. S. Wilson,et al.  A Temporary Local Energy Pool Coupled to Neuronal Activity: Fluctuations of Extracellular Lactate Levels in Rat Brain Monitored with Rapid‐Response Enzyme‐Based Sensor , 1997, Journal of neurochemistry.

[3]  Genxi Li,et al.  A reagentless nitric oxide biosensor based on hemoglobin-DNA films , 2000 .

[4]  Tianhong Cui,et al.  All-polymer capacitor fabricated with inkjet printing technique , 2003 .

[5]  M. Tanticharoen,et al.  H2O2 from an oxidase enzyme can be detected cathodically using metal microparticles dispersed in a polymeric film electrode , 1996 .

[6]  N Nakabayashi,et al.  Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. I. Molecular design of polymeric additives and their functions. , 1996, Journal of biomedical materials research.

[7]  Lars M Bjursten,et al.  Anti-inflammatory properties of micropatterned titanium coatings. , 2006, Journal of biomedical materials research. Part A.

[8]  George G. Malliaras,et al.  Enzymatic sensing with organic electrochemical transistors , 2008 .

[9]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[10]  S A Spencer,et al.  Glucose sensor with improved haemocompatibilty. , 2000, Biosensors & bioelectronics.

[11]  Rosa Villa,et al.  New technology for multi-sensor silicon needles for biomedical applications , 2001 .

[12]  C. Banks,et al.  Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide , 2005, Analytical and bioanalytical chemistry.

[13]  H. V. Gelder The Netherlands , 2004, Constitutions of Europe (2 vols.).

[14]  R D O'Neill,et al.  Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. , 1994, The Analyst.

[15]  R. Baetzold,et al.  Electronic properties of metal clusters: size effects , 1981 .

[16]  J. L. House,et al.  A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation. , 2004, Diabetes technology & therapeutics.

[17]  R. P. Cavalieri,et al.  Improved platinization conditions produce a 60-fold increase in sensitivity of amperometric biosensors using glucose oxidase immobilized in poly-o-phenylenediamine , 2005 .

[18]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[19]  S Srinivasan,et al.  Role of surface charge of the blood vessel wall, blood cells, and prosthetic materials in intravascular thrombosis. , 1970, Journal of colloid and interface science.

[20]  David L Kaplan,et al.  Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. , 2008, Biomaterials.

[21]  Shaojun Dong,et al.  Electrocatalytic reduction of oxygen at multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode , 2004 .

[22]  Bin Chen,et al.  All-polymer RC filter circuits fabricated with inkjet printing technology , 2003 .

[23]  Xiao Wei Sun,et al.  Nonenzymatic Glucose Sensor Using Freestanding Single-Wall Carbon Nanotube Films , 2007 .

[24]  L. Nie,et al.  Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. , 2004, Analytical biochemistry.

[25]  P. Hoet,et al.  Nanoparticles – known and unknown health risks , 2004, Journal of nanobiotechnology.

[26]  Itamar Willner,et al.  Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  Anthony Guiseppi-Elie,et al.  SAM-modified microdisc electrode arrays (MDEAs) with functionalized carbon nanotubes , 2010 .

[28]  Guodong Liu,et al.  Electrochemical coding for multiplexed immunoassays of proteins. , 2004, Analytical chemistry.

[29]  Larry A. Nagahara,et al.  A Conducting Polymer Nanojunction Sensor for Glucose Detection , 2004 .

[30]  Jay W. Grate,et al.  Nanostructures for enzyme stabilization , 2006 .

[31]  Tejal A Desai,et al.  Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells. , 2006, Biomaterials.

[32]  M Ferrari,et al.  Nanoporous anti-fouling silicon membranes for biosensor applications. , 2000, Biosensors & bioelectronics.

[33]  Hyeonseok Yoon,et al.  Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. , 2008, The journal of physical chemistry. B.

[34]  Francis Moussy,et al.  Coil-type implantable glucose biosensor with excess enzyme loading. , 2005, Frontiers in bioscience : a journal and virtual library.

[35]  Shiyi Xu,et al.  A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres. , 2004, Biosensors & bioelectronics.

[36]  M. Shults,et al.  Evaluation of a Subcutaneous Glucose Sensor out to 3 Months in a Dog Model , 1994, Diabetes Care.

[37]  David L Kaplan,et al.  Spider silks and their applications. , 2008, Trends in biotechnology.

[38]  Guo-Li Shen,et al.  Platinum nanoparticle-modified carbon fiber ultramicroelectrodes for mediator-free biosensing , 2006 .

[39]  D. Gough,et al.  Application of Chronic Intravascular Blood Glucose Sensor in Dogs , 1990, Diabetes.

[40]  Pier Giorgio Zambonin,et al.  A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite. , 2002, Analytical chemistry.

[41]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[42]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[43]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[44]  Guang Xiong,et al.  Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. , 2005, The journal of physical chemistry. B.

[45]  Daniel Loss,et al.  Quantum phenomena in Nanotechnology , 2009, Nanotechnology.

[46]  D. Arrigan Nanoelectrodes, nanoelectrode arrays and their applications. , 2004, The Analyst.

[47]  Joseph Wang,et al.  Glucose Biosensors: 40 Years of Advances and Challenges , 2001 .

[48]  M. Allen,et al.  Microfabricated microneedles for gene and drug delivery. , 2000, Annual review of biomedical engineering.

[49]  M. Prato,et al.  Carbon nanotubes as nanomedicines: from toxicology to pharmacology. , 2006, Advanced drug delivery reviews.

[50]  Paul D. Hale,et al.  A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator , 1989 .

[51]  Wlodzimierz Kutner,et al.  β-Cyclodextrin cation exchange polymer membrane for improved second-generation glucose biosensors , 1995 .

[52]  Wlodzimierz Kutner,et al.  Charge mediation by ruthenium poly(pyridine) complexes in 'second-generation' glucose biosensors based on carboxymethylated β-cyclodextrin polymer membranes , 2002, Analytical and bioanalytical chemistry.

[53]  D. Gough,et al.  Two-dimensional enzyme electrode sensor for glucose. , 1985, Analytical chemistry.

[54]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[55]  F. Crespi,et al.  In vivo voltammetric detection of neuropeptides with micro carbon fiber biosensors: possible selective detection of somatostatin. , 1991, Analytical biochemistry.

[56]  James F. Rusling,et al.  Thermostable peroxidase -polylysine films for biocatalysis at 90 °C , 2007 .

[57]  Xinjian Liu,et al.  A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100 , 2005 .

[58]  J. Dordick,et al.  Siloxane-based biocatalytic films and paints for use as reactive coatings. , 2001, Biotechnology and bioengineering.

[59]  Mark E Meyerhoff,et al.  Improving Blood Compatibility of Intravascular Oxygen Sensors Via Catalytic Decomposition of S-Nitrosothiols to Generate Nitric Oxide In Situ. , 2007, Sensors and actuators. B, Chemical.

[60]  Jing Huang,et al.  An Overview of Nanoscale Devices and Circuits , 2007, IEEE Design & Test of Computers.

[61]  Hiroshi Iwai,et al.  Roadmap for 22nm and beyond (Invited Paper) , 2009 .

[62]  Minghui Yang,et al.  Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. , 2006, Biomaterials.

[63]  D. J. Harrison,et al.  Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood. , 1988, Analytical chemistry.

[64]  Minghui Yang,et al.  Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. , 2006, Biosensors & bioelectronics.

[65]  Plamen Atanasov,et al.  Development of needle-type glucose sensor with high selectivity , 1998 .

[66]  Dietmar Haltrich,et al.  Third-generation biosensor for lactose based on newly discovered cellobiose dehydrogenase. , 2006, Analytical chemistry.

[67]  John C. Roberts,et al.  Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors , 2007 .

[68]  Christopher K. Ober,et al.  Advances in polymers for anti-biofouling surfaces , 2008 .

[69]  Yong Jae Cho,et al.  Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures , 2009 .

[70]  Murali Sastry,et al.  Free-standing nanogold membranes as scaffolds for enzyme immobilization. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[71]  Shaojun Dong,et al.  Investigation of Oxygen‐ and Hydrogen Peroxide‐Reduction on Platinum Particles Dispersed on Poly(o‐phenylenediamine) Film Modified Glassy Carbon Electrodes , 1998 .

[72]  M Ferrari,et al.  Microfabricated immunoisolating biocapsules. , 1998, Biotechnology and bioengineering.

[73]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[74]  S Fiorito,et al.  Toxicity and biocompatibility of carbon nanoparticles. , 2006, Journal of nanoscience and nanotechnology.

[75]  C. Winder,et al.  Organic photodiodes for biosensor miniaturization. , 2009, Analytical chemistry.

[76]  Wisniewski,et al.  Methods for reducing biosensor membrane biofouling. , 2000, Colloids and surfaces. B, Biointerfaces.

[77]  D. G. Morris,et al.  Ductility of Nanostructured Materials , 1999 .

[78]  V. L. Sukhanov,et al.  Diffusion controlled analytical performances of hydrogen peroxide sensors: Towards the sensor with the largest dynamic range , 2009 .

[79]  Mark E Meyerhoff,et al.  Fabrication and in vivo evaluation of nitric oxide-releasing electrochemical oxygen-sensing catheters. , 2004, Methods in enzymology.

[80]  Kurt Kalcher,et al.  Amperometric Glucose Biosensor Based on Rhodium Dioxide‐Modified Carbon Ink , 2006 .

[81]  L. Gorton,et al.  Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors , 1999 .

[82]  Yi-Ge Zhou,et al.  Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose , 2009 .

[83]  A Heller,et al.  A miniature biofuel cell. , 2001, Journal of the American Chemical Society.

[84]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[85]  C. Lei,et al.  Studies on employing tetrathiafulvalene as an electron shuttle incorporated in a montmorillonite-modified immobilization matrix for an enzyme electrode , 1996 .

[86]  Zhi-Kang Xu,et al.  Enzyme immobilization on electrospun polymer nanofibers: An overview , 2009 .

[87]  Kang Wang,et al.  Highly Ordered Platinum‐Nanotubule Arrays for Amperometric Glucose Sensing , 2005 .

[88]  Joanne M. Belovich,et al.  Novel hyaluronic acid coating for potential use in glucose sensor design. , 2003, Diabetes technology & therapeutics.

[89]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[90]  Mark E Meyerhoff,et al.  In vivo biocompatibility and analytical performance of intravascular amperometric oxygen sensors prepared with improved nitric oxide-releasing silicone rubber coating. , 2002, Analytical chemistry.

[91]  Wlodzimierz Kutner,et al.  Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes , 2003 .

[92]  Ping Wang,et al.  Nanobiocatalysis and its potential applications. , 2008, Trends in biotechnology.

[93]  H. van Kempen,et al.  Polypyrrole microtubules and their use in the construction of a third generation biosensor , 1992 .

[94]  R. C. Johnson,et al.  Neovascularization of synthetic membranes directed by membrane microarchitecture. , 1995, Journal of biomedical materials research.

[95]  John H T Luong,et al.  Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. , 2007, The Analyst.

[96]  Thomas Schanze,et al.  Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development , 2005, Journal of neural engineering.

[97]  W Kerner,et al.  The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma. , 1993, Biosensors & bioelectronics.

[98]  Plamen Atanasov,et al.  Enzyme‐catalyzed direct electron transfer: Fundamentals and analytical applications , 1997 .

[99]  Adam Heller,et al.  Sources of instability of ‘wired’ enzyme anodes in serum: urate and transition metal ions , 2001 .

[100]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. , 1997, Journal of biomedical materials research.

[101]  Jinghong Li,et al.  Layered Titanate Nanosheets Intercalated with Myoglobin for Direct Electrochemistry , 2007 .

[102]  J Wang,et al.  Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. , 2001, Analytical chemistry.

[103]  Mauro Ferrari,et al.  Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[104]  Michael Gerstenberg,et al.  Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. , 2006, Diabetes technology & therapeutics.

[105]  James F. Rusling,et al.  Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes , 2003 .

[106]  T Kaku,et al.  Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system. , 1994, Analytical chemistry.

[107]  Robert D. O'Neill,et al.  Characterisation in vitro of a naphthoquinone-mediated glucose oxidase-modified carbon paste electrode designed for neurochemical analysis in vivo , 1995 .

[108]  Jungyoup Han,et al.  Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. , 2007, Biosensors & bioelectronics.

[109]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[110]  N Wisniewski,et al.  Characterization of implantable biosensor membrane biofouling , 2000, Fresenius' journal of analytical chemistry.

[111]  X. W. Sun,et al.  Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition , 2006 .

[112]  A. Turner,et al.  Ferrocene-mediated enzyme electrode for amperometric determination of glucose. , 1984, Analytical chemistry.

[113]  Seung M. Oh,et al.  Enzyme sensors prepared by electrodeposition on platinized platinum electrodes , 1996 .

[114]  A Warsinke,et al.  Second generation biosensors. , 1991, Biosensors & bioelectronics.

[115]  Frieder W. Scheller,et al.  A Pyruvate Oxidase Electrode Based on an Electrochemically Deposited Redox Polymer , 1999 .

[116]  Henry N. Blount,et al.  Interfacial electrochemistry of cytochrome c at tin oxide, indium oxide, gold, and platinum electrodes , 1984 .

[117]  Prithu Sharma,et al.  Recent advances in carbon nanotube-based electronics , 2008 .

[118]  N. Mano,et al.  Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. , 2003, Journal of the American Chemical Society.

[119]  Jun Li,et al.  Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. , 2007, Biosensors & bioelectronics.

[120]  Yang-Kyu Choi,et al.  Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques , 2006, Sensors (Basel, Switzerland).

[121]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[122]  Vivek Subramanian,et al.  Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics , 2003 .

[123]  T Kaehler,et al.  Nanotechnology: basic concepts and definitions. , 1994, Clinical chemistry.

[124]  Joseph Wang,et al.  Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 μm carbon fiber , 1996 .

[125]  M. Fillenz,et al.  Real-time monitoring of brain energy metabolism in vivo using microelectrochemical sensors: the effects of anesthesia. , 2001, Bioelectrochemistry.

[126]  Genxi Li,et al.  Third-Generation Biosensors Based on the Direct Electron Transfer of Proteins , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[127]  Mu Chiao,et al.  An investigation of vibration-induced protein desorption mechanism using a micromachined membrane and PZT plate , 2008, Biomedical microdevices.

[128]  A. L. Hart,et al.  Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism , 1998 .

[129]  G. S. Wilson,et al.  Can continuous glucose monitoring be used for the treatment of diabetes. , 1992, Analytical chemistry.

[130]  Roberto Santucci,et al.  Direct electrochemistry of membrane-entrapped horseradish peroxidase.: Part II: Amperometric detection of hydrogen peroxide , 1998 .

[131]  Kristy M Ainslie,et al.  In vitro immunogenicity of silicon-based micro- and nanostructured surfaces. , 2008, ACS nano.

[132]  Wei Wei,et al.  Mechanical and biological properties of nanoporous carbon membranes , 2008, Biomedical materials.

[133]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[134]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[135]  Fotios Papadimitrakopoulos,et al.  A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response , 2008, Journal of diabetes science and technology.

[136]  F Moussy,et al.  Calcification-resistant Nafion/Fe3+ assemblies for implantable biosensors. , 2000, Biomacromolecules.

[137]  F. Davis,et al.  Sonochemically fabricated microelectrode arrays for biosensors offering widespread applicability: Part I. , 2004, Biosensors & bioelectronics.

[138]  A. Bausch,et al.  Engineered Microcapsules Fabricated from Reconstituted Spider Silk , 2007 .

[139]  G. S. Wilson,et al.  Biosensors for real-time in vivo measurements. , 2005, Biosensors & bioelectronics.

[140]  Kristy M Ainslie,et al.  Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. , 2008, Lab on a chip.

[141]  Itamar Willner,et al.  Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized au nanoparticles yields an electrically contacted biocatalyst. , 2005, Journal of the American Chemical Society.

[142]  Fritz B Prinz,et al.  Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[143]  M. Porter,et al.  Electrochemically modulated liquid chromatography: an electrochemical strategy for manipulating chromatographic retention. , 2001, The Analyst.

[144]  Baojun Yang,et al.  Myoglobin/sol-gel film modified electrode: direct electrochemistry and electrochemical catalysis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[145]  Robert D. O'Neill,et al.  Design variations of a polymer–enzyme composite biosensor for glucose: Enhanced analyte sensitivity without increased oxygen dependence , 2005 .

[146]  Kristy M Ainslie,et al.  Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. , 2005, Nano letters.

[147]  Francis Moussy,et al.  A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. , 2006, Biosensors & bioelectronics.

[148]  G. S. Wilson,et al.  Protein interactions with subcutaneously implanted biosensors. , 2006, Biomaterials.

[149]  C. Danilowicz,et al.  Electrical Communication between Electrodes and Enzymes Mediated by Redox Hydrogels. , 1996, Analytical chemistry.

[150]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[151]  P. Joshi,et al.  Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. , 2005, Analytical chemistry.

[152]  Woo Youn Kim,et al.  Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices. , 2009, Chemical Society reviews.

[153]  Anthony Guiseppi-Elie,et al.  Design considerations in the development and application of microdisc electrode arrays (MDEAs) for implantable biosensors , 2009, Biomedical microdevices.

[154]  Mehmet Ozsoz,et al.  Methylene-green-mediated carbon paste glucose biosensor , 1995 .

[155]  Fotios Papadimitrakopoulos,et al.  Layer-by-Layer Assembled Semipermeable Membrane for Amperometric Glucose Sensors , 2007, Journal of diabetes science and technology.

[156]  Mark E Meyerhoff,et al.  In vivo chemical sensors: tackling biocompatibility. , 2006, Analytical chemistry.

[157]  Guillermina L. Luque,et al.  Glucose Biosensor Based on the Use of a Carbon Nanotube Paste Electrode Modified with Metallic Particles , 2006 .

[158]  C. Lowe,et al.  Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. , 1988, Analytical chemistry.

[159]  J. Luong,et al.  Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. , 2004, Analytical chemistry.

[160]  Wilfried Mokwa,et al.  Micro-transponder systems for medical applications , 2001, IEEE Trans. Instrum. Meas..

[161]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[162]  R. O'Neill,et al.  Polymer-enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence. , 2005, Analytical chemistry.

[163]  Mark E. Meyerhoff,et al.  Preparation and characterization of implantable sensors with nitric oxide release coatings , 2003 .

[164]  S. Mazumdar,et al.  Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants. , 2001, Bioelectrochemistry.

[165]  F Moussy,et al.  Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. , 2002, Biomaterials.

[166]  James F Rusling,et al.  Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. , 2005, Molecular bioSystems.

[167]  Wolfram Schommers,et al.  THERMAL STABILITY AND SPECIFIC MATERIAL PROPERTIES OF NANOSYSTEMS , 2000 .

[168]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[169]  Akio Fujita,et al.  ENHANCED N-DEMETHYLASE ACTIVITY OF CYTOCHROME C BOUND TO A PHOSPHATE-BEARING SYNTHETIC BILAYER MEMBRANE , 1994 .

[170]  Harry A. Atwater,et al.  Plasmonics: optics at the nanoscale , 2005 .

[171]  Isao Karube,et al.  Ultra micro glutamate sensor using platinized carbon-fiber electrode and integrated counter electrode , 1993 .

[172]  K. Shiu,et al.  Glucose Biosensor Based on Multi‐Walled Carbon Nanotube Modified Glassy Carbon Electrode , 2004 .

[173]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[174]  D. J. Harrison,et al.  Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating. , 1993, Analytical chemistry.

[175]  R. Kane,et al.  Polymer-nanotube-enzyme composites as active antifouling films. , 2007, Small.

[176]  Philip N. Bartlett,et al.  Amperometric enzyme electrodes: Part II. Conducting salts as electrode materials for the oxidation of glucose oxidase , 1985 .

[177]  Park S. Nobel,et al.  Summary and Future Perspectives , 2004 .

[178]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[179]  Susumu Kuwabata,et al.  Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase , 2007 .

[180]  A. Salimi,et al.  Electrocatalytic Reduction of H2O2 and Oxygen on the Surface of Thionin Incorporated onto MWCNTs Modified Glassy Carbon Electrode: Application to Glucose Detection , 2007 .

[181]  N. Wisniewski,et al.  Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. , 2001, Journal of biomedical materials research.

[182]  J. L. House,et al.  Immobilization Techniques to Avoid Enzyme Loss from Oxidase-Based Biosensors: A One-Year Study , 2007, Journal of diabetes science and technology.

[183]  T von Woedtke,et al.  Oxygen tension at the subcutaneous implantation site of glucose sensors. , 1989, Biomedica biochimica acta.

[184]  Kazuhiko Ishihara,et al.  New Biocompatible Polymer: Application for Implantable Glucose Sensor , 1994 .

[185]  P Vadgama,et al.  Bio‐/haemocompatibility: implications and outcomes for sensors? , 1995, Acta anaesthesiologica Scandinavica. Supplementum.

[186]  A Heller,et al.  Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. , 1990, Analytical chemistry.

[187]  Tejal A. Desai,et al.  Microfabrication of Multilayer, Asymmetric, Polymeric Devices for Drug Delivery , 2005 .

[188]  Fotios Papadimitrakopoulos,et al.  A Review of the Development of a Vehicle for Localized and Controlled Drug Delivery for Implantable Biosensors , 2008, Journal of diabetes science and technology.

[189]  M Ohwa,et al.  Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. , 1996, Analytical chemistry.

[190]  Tejal A Desai,et al.  Nanoporous microsystems for islet cell replacement. , 2004, Advanced drug delivery reviews.

[191]  Mohammad Reza Abidian,et al.  Multifunctional Nanobiomaterials for Neural Interfaces , 2009 .

[192]  K. Sandhage,et al.  Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. , 2006, Small.

[193]  Fwu-Shan Sheu,et al.  Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes , 2004 .

[194]  Guo-Li Shen,et al.  Electrochemical performance of l-cysteine–goldparticle nanocomposite electrode interface as applied to preparation of mediator-free enzymatic biosensors , 2006 .

[195]  M. Ferrari,et al.  Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications , 1999 .

[196]  Na Wang,et al.  Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. , 2007, Biosensors & bioelectronics.

[197]  Aiguo Wu,et al.  A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. , 2002, Analytical chemistry.

[198]  G. S. Wilson,et al.  Rapid Changes in Local Extracellular Rat Brain Glucose Observed with an In Vivo Glucose Sensor , 1997, Journal of neurochemistry.

[199]  G. Gilardi,et al.  Manipulating redox systems: application to nanotechnology. , 2001, Trends in biotechnology.

[200]  Nicolaas F. de Rooij,et al.  Microsystem technologies for implantable applications , 2007 .

[201]  Shen-Ming Chen,et al.  Myoglobin/arylhydroxylamine film modified electrode: Direct electrochemistry and electrochemical catalysis. , 2007, Talanta.

[202]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. , 1998, Journal of biomedical materials research.

[203]  Robert H. Davis,et al.  Protein fouling of surface-modified polymeric microfiltration membranes , 1996 .

[204]  F. Papadimitrakopoulos,et al.  The role of H2O2 outer diffusion on the performance of implantable glucose sensors. , 2009, Biosensors & bioelectronics.

[205]  A Heller,et al.  Glucose electrodes based on cross-linked [Os(bpy)2Cl]+/2+ complexed poly(1-vinylimidazole) films. , 1993, Analytical chemistry.

[206]  Fotios Papadimitrakopoulos,et al.  Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels , 2005, The AAPS Journal.

[207]  Adam Heller,et al.  A miniature biofuel cell operating in a physiological buffer. , 2002, Journal of the American Chemical Society.

[208]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[209]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[210]  J. Rogalski,et al.  Poly-o-phenylenediamine as redox mediator for laccase , 2007 .

[211]  Adam Heller,et al.  Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes , 1991 .

[212]  M. Shults,et al.  Enzymatic Glucose Sensors: Improved Long-Term Performance In Vitro and In Vivo , 1994, ASAIO journal.

[213]  Kaushal Rege,et al.  Enzyme-Polymer-Single Walled Carbon Nanotube Composites as Biocatalytic Films , 2003 .

[214]  C. Murphy,et al.  Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. , 2005, Small.

[215]  James F Rusling,et al.  Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers: enhanced catalytic response to hydrogen peroxide. , 2003, Analytical chemistry.

[216]  Diane J Burgess,et al.  Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[217]  Y. Liu,et al.  Amperometric Glucose Biosensing of Gold Nanoparticles and Carbon Nanotube Multilayer Membranes , 2007 .

[218]  Viola Birss,et al.  Glucose detection based on electrochemically formed Ir oxide films , 2002 .

[219]  Thomas Stieglitz,et al.  Implantable flexible electrodes for functional electrical stimulation. , 2004, Medical device technology.

[220]  Robert H. Hurt,et al.  Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue , 2006 .

[221]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. , 1998, Journal of biomedical materials research.

[222]  Yuehe Lin,et al.  Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles , 2004 .

[223]  S Bharathi,et al.  A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. , 2001, The Analyst.

[224]  C. E. W. Hahn,et al.  Tutorial Review. Electrochemical analysis of clinicalblood-gases, gases and vapours , 1998 .

[225]  V. Subramanian,et al.  An ink-jet-deposited passive component process for RFID , 2004, IEEE Transactions on Electron Devices.

[226]  D. Howey,et al.  In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. , 1992, Biosensors & bioelectronics.

[227]  Yinghong Xiao,et al.  Nanocomposites: From Fabrications to Electrochemical Bioapplications , 2008 .

[228]  Krishanu Saha,et al.  Designing synthetic materials to control stem cell phenotype. , 2007, Current opinion in chemical biology.

[229]  J. Jansen,et al.  Performance of subcutaneously implanted glucose sensors for continuous monitoring. , 1999, The Netherlands journal of medicine.

[230]  F Moussy,et al.  Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor. , 2001, Biomacromolecules.

[231]  Fotios Papadimitrakopoulos,et al.  Controlling Acute Inflammation with Fast Releasing Dexamethasone-PLGA Microsphere/PVA Hydrogel Composites for Implantable Devices , 2007, Journal of diabetes science and technology.

[232]  Aicheng Chen,et al.  Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. , 2008, Analytical chemistry.