Realization of Mott-insulating electrides in dimorphic Yb5Sb3

[1]  Hideo Hosono,et al.  Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation. , 2017, Journal of the American Chemical Society.

[2]  H. Hosono,et al.  Interlayer states arising from anionic electrons in the honeycomb-lattice-based compounds AeAlSi ( Ae=Ca , Sr, Ba) , 2017 .

[3]  H. Hosono,et al.  Strong Localization of Anionic Electrons at Interlayer for Electrical and Magnetic Anisotropy in Two-Dimensional Y2C Electride. , 2017, Journal of the American Chemical Society.

[4]  S. J. Hashemifar,et al.  First-principles insights into f magnetism: A case study on some magnetic pyrochlores , 2015, 1502.01814.

[5]  T. Kamiya,et al.  Two-Dimensional Transition-Metal Electride Y2C , 2014 .

[6]  A. Otero-de-la-Roza,et al.  Density-functional description of electrides. , 2014, Physical chemistry chemical physics : PCCP.

[7]  David Koller,et al.  F center in lithium fluoride revisited: Comparison of solid-state physics and quantum-chemistry approaches , 2014 .

[8]  H. Hosono,et al.  Dicalcium nitride as a two-dimensional electride with an anionic electron layer , 2013, Nature.

[9]  M. Tsukada,et al.  Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites , 2010, Nature communications.

[10]  Kunihiro Watanabe,et al.  μSR study on antiferromagnetism of alkali-metal clusters incorporated in zeolite sodalite , 2010 .

[11]  J. L. Dye Electrides: early examples of quantum confinement. , 2009, Accounts of chemical research.

[12]  Frank Fuchs,et al.  Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO , 2009 .

[13]  J. Corbett,et al.  R(5)Pn(3)-type phases of the heavier trivalent rare-earth-metal pnictides (Pn = Sb, Bi): new phase transitions for Er(5)Sb(3) and Tm(5)Sb(3). , 2009, Inorganic chemistry.

[14]  J. Pivan,et al.  Erbium-rich region of the ternary Er–Ni–Sb system: Solid state phase equilibria at 1073 K and crystal structures of the new ternary compound Er5Sb3−xNix (x = 0.48) and both modifications of Er5Sb3 , 2007 .

[15]  J. Corbett,et al.  Hydrogen in Polar Intermetallics. Binary Pnictides of Divalent Metals with Mn5Si3-type Structures and Their Isotypic Ternary Hydride Solutions , 2006 .

[16]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[17]  Hideo Hosono,et al.  High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e-) , 2003, Science.

[18]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[19]  K. Yonemitsu,et al.  Dimensional Crossovers and Phase Transitions in Strongly Correlated Low-Dimensional Electron Systems , 2002 .

[20]  K. Schwarz,et al.  Electronic structure of the sodium and potassium electrosodalites(Na/K)8(AlSiO4)6 , 2001 .

[21]  Y. Mozharivskyj,et al.  High-temperature modification of Y5Sb3 and its ternary analogue Y5NixSb3-x , 2001 .

[22]  S. Kuck,et al.  Preparation and spectroscopy of Yb2+-doped Y3Al5O12, YAlO3, and LiBaF3 , 2000 .

[23]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[24]  J. Corbett,et al.  Hydrogen stabilization.: Nine isotypic orthorhombic A5Pn3H phases (among A=Ca, Sr, Ba, Sm, Eu, Yb; Pn=Sb, Bi) formerly described as binary β-Yb5Sb3-type compounds , 1998 .

[25]  J. L. Dye,et al.  Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals† , 1997 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  J. L. Eglin,et al.  An electride with a large six-electron ring , 1994, Nature.

[29]  J. L. Dye,et al.  Electrides: Ionic Salts with Electrons as the Anions , 1990, Science.

[30]  H. Eick,et al.  Synthesis of YbBr2 and YbCl2 and an x-ray diffraction study of the system YbBr2YbCl2 , 1987 .

[31]  R. Levitin,et al.  Physical and chemical properties of the rare earth antimonides Ln5Sb3 , 1986 .

[32]  Patrick B. Smith,et al.  Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride , 1983 .

[33]  I. P. Semitelou,et al.  Magnetic properties of the R5Sb3 compounds (R = La, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm and Y) , 1983 .

[34]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[35]  G. Brunton,et al.  Crystal structure of .beta.-ytterbium triantimonide, a low-temperature phase , 1971 .

[36]  F. Schmidt,et al.  Yttrium-antimony alloy system☆ , 1970 .

[37]  E. Parthé,et al.  Antimonides with D88 and Hf5Sn3Cu structure types , 1968 .

[38]  H. Steinfink,et al.  Phase equilibriums and crystal chemistry of the intermediate phases in the ytterbium-antimony system , 1967 .

[39]  D. L. Dexter Note on the Absorption Spectra of Pure and Colored Alkali Halide Crystals , 1951 .

[40]  G. Grüner The dynamics of spin-density waves , 1994 .