On the equivalence of linear sets

Let L be a linear set of pseudoregulus type in a line $$\ell $$ℓ in $$\varSigma ^*={\mathrm {PG}}(t-1,q^t)$$Σ∗=PG(t-1,qt), $$t=5$$t=5 or $$t>6$$t>6. We provide examples of q-order canonical subgeometries $$\varSigma _1,\, \varSigma _2 \subset \varSigma ^*$$Σ1,Σ2⊂Σ∗ such that there is a $$(t-3)$$(t-3)-subspace $$\varGamma \subset \varSigma ^*\setminus (\varSigma _1 \cup \varSigma _2 \cup \ell )$$Γ⊂Σ∗\(Σ1∪Σ2∪ℓ) with the property that for $$i=1,2$$i=1,2, L is the projection of $$\varSigma _i$$Σi from center $$\varGamma $$Γ and there exists no collineation $$\phi $$ϕ of $$\varSigma ^*$$Σ∗ such that $$\varGamma ^{\phi }=\varGamma $$Γϕ=Γ and $$\varSigma _1^{\phi }=\varSigma _2$$Σ1ϕ=Σ2. Condition (ii) given in Theorem 3 in Lavrauw and Van de Voorde (Des Codes Cryptogr 56:89–104, 2010) states the existence of a collineation between the projecting configurations (each of them consisting of a center and a subgeometry), which give rise by means of projections to two linear sets. It follows from our examples that this condition is not necessary for the equivalence of two linear sets as stated there. We characterize the linear sets for which the condition above is actually necessary.

[1]  Michel Lavrauw,et al.  Subspaces Intersecting Each Element of a Regulus in One Point, André-Bruck-Bose Representation and Clubs , 2014, Electron. J. Comb..

[2]  Michel Lavrauw,et al.  Scattered Linear Sets and Pseudoreguli , 2013, Electron. J. Comb..

[3]  John Sheekey,et al.  On embeddings of minimum dimension of PG(n,q)×PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(n,q , 2013, Designs, Codes and Cryptography.

[4]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[5]  Michel Lavrauw,et al.  On linear sets on a projective line , 2010, Des. Codes Cryptogr..

[6]  Susan G. Barwick,et al.  Exterior splashes and linear sets of rank 3 , 2014, Discret. Math..

[7]  Nicola Durante,et al.  Scattered linear sets generated by collineations between pencils of lines , 2014 .

[8]  Michel Lavrauw,et al.  Segre embeddings and finite semifields , 2014, Finite Fields Their Appl..

[9]  Rudolf Lide,et al.  Finite fields , 1983 .

[10]  John Sheekey,et al.  On embeddings of minimum dimension of $${\mathrm{PG}}(n,q)\times {\mathrm{PG}}(n,q)$$PG(n,q)×PG(n,q) , 2015 .

[11]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[12]  Guglielmo Lunardon,et al.  Normal Spreads , 1999 .

[13]  R. Trombetti,et al.  Maximum scattered linear sets of pseudoregulus type and the Segre variety $\mathcal{S}_{n,n}$ , 2012, 1211.3604.

[14]  Michel Lavrauw,et al.  Subgeometries and linear sets on a projective line , 2014, Finite Fields Their Appl..

[15]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[16]  Olga Polverino,et al.  Fq-linear blocking sets in PG(2,q4) , 2005 .

[17]  Giuseppe Marino,et al.  On Fq-linear sets of PG(3, q3) and semifields , 2007, J. Comb. Theory, Ser. A.