Unique critical state characteristics in granular media considering fabric anisotropy

The concept of the critical state in granular soils needs to make proper reference to the fabric structure that develops at critical state. This study identifies a unique property associated with the fabric structure relative to the stresses at critical state. A unique relationship between the mean effective stress and a fabric anisotropy parameter, K, defined by the first joint invariant of the deviatoric stress tensor and the deviatoric fabric tensor, is found at critical state, and is path-independent. Numerical simulations using the discrete-element method under different loading conditions and intermediate principal stress ratios identify a unique power law for this relationship. Based on the findings, a new definition of critical state for granular media is proposed. In addition to the conditions of constant stress and unique void ratio required by the conventional critical state concept, the new definition imposes the additional constraint that K reaches a unique value at critical state. A unique s...

[1]  Leo Rothenburg,et al.  'Stress-force-fabric' relationship for assemblies of ellipsoids , 2001 .

[2]  Kenji Ishihara,et al.  Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. , 1998 .

[3]  Yannis F. Dafalias,et al.  Dilatancy for cohesionless soils , 2000 .

[4]  A. Schofield,et al.  On The Yielding of Soils , 1958 .

[5]  Ken Been,et al.  Soil Liquefaction: A Critical State Approach , 2006 .

[6]  小田 匡寛,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[7]  Katalin Bagi,et al.  Stress and strain in granular assemblies , 1996 .

[8]  C. C. Wang,et al.  A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions , 1970 .

[9]  Peter Mora,et al.  A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics , 2004 .

[10]  R. Bathurst,et al.  Analytical study of induced anisotropy in idealized granular materials , 1989 .

[11]  K. Soga,et al.  DEM analysis of soil fabric effects on behaviour of sand , 2010 .

[12]  Yukio Nakata,et al.  FLOW DEFORMATION OF SANDS SUBJECTED TO PRINCIPAL STRESS ROTATION , 1998 .

[13]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[14]  M. Satake,et al.  Fabric tensor in granular materials , 1982 .

[15]  F. Molenkamp,et al.  STRESS-INDUCED ANISOTROPY IN GRANULAR MASSES , 1986 .

[16]  M. El-Sohby INITIAL FABRICS AND THEIR RELATIONS TO MECHANICAL PROPERTIES OF GRANULAR MATERIAL , 1973 .

[17]  Yannis F. Dafalias,et al.  State-dependant dilatancy in critical-state constitutive modelling of sand , 1999 .

[18]  Heinrich M. Jaeger,et al.  Signatures of granular microstructure in dense shear flows , 2000, Nature.

[19]  Ken Been,et al.  The critical state of sands , 1991 .

[20]  A. Schofield,et al.  Yielding of Clays in States Wetter than Critical , 1963 .

[21]  Alsidqi Hasan,et al.  Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography , 2010 .

[22]  John S. Rowlinson,et al.  Chapter 3 – The critical state , 1982 .

[23]  Ken Been,et al.  A STATE PARAMETER FOR SANDS , 1985 .

[24]  Alsidqi Hasan,et al.  Three dimensional fabric evolution of sheared sand , 2012 .

[25]  Ikuo Towhata,et al.  FLOW THEORY FOR SAND DURING ROTATION OF PRINCIPAL STRESS DIRECTION , 1991 .

[26]  Gioacchino Viggiani,et al.  Discrete and continuum analysis of localised deformation in sand using X-ray mu CT and volumetric digital image correlation , 2010 .

[27]  C. O’Sullivan,et al.  The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions , 2012, Granular Matter.

[28]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[29]  Vinod K. Garga,et al.  ディスカッション The Steady State of Sandy Soils , 1997 .

[30]  C. Thornton NUMERICAL SIMULATIONS OF DEVIATORIC SHEAR DEFORMATION OF GRANULAR MEDIA , 2000 .

[31]  X. S. Li,et al.  Modeling of Dilative Shear Failure , 1997 .

[32]  H. Ismail,et al.  THE MECHANISM OF FABRIC CHANGES DURING COMPRESSIONAL DEFORMATION OF SAND , 1973 .

[33]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[34]  F. Tatsuoka,et al.  Undrained Deformation and Liquefaction of Sand under Cyclic Stresses , 1975 .

[35]  K. Ishihara Liquefaction and flow failure during earthquakes. , 1993 .

[36]  Kanatani Ken-Ichi DISTRIBUTION OF DIRECTIONAL DATA AND FABRIC TENSORS , 1984 .

[37]  Xia Li,et al.  Micro-Macro Quantification of the Internal Structure of Granular Materials , 2009 .

[38]  E. Collings The Critical State , 1986 .

[39]  C. Thornton,et al.  On the evolution of stress and microstructure during general 3D deviatoric straining of granular media , 2010 .

[40]  S. Masson,et al.  Micromechanical Analysis of the Shear Behavior of a Granular Material , 2001 .

[41]  Yannis F. Dafalias,et al.  Anisotropic Critical State Theory: Role of Fabric , 2012 .

[42]  Kenji Ishihara,et al.  THE STEADY STATE OF SANDY SOILS , 1996 .

[43]  Masanobu Oda,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[44]  Jidong Zhao,et al.  The signature of shear-induced anisotropy in granular media , 2013 .