A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities

NWO support through the Visitors Grant (040.11.351 to J.M.N.); Meltzer foundation, University of Bergen and the NWO Visitors Grant (040.11.499 to F.A.R.); Research Foundation–Flanders FWO through the Odysseus programme (G0G1316N to I.S.P.).

[1]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[2]  François Lehmann,et al.  Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media , 1998 .

[3]  Catherine Choquet,et al.  Numerical validation of an upscaled sharp-diffuse interface model for stratified miscible flows , 2017, Math. Comput. Simul..

[4]  Luca Bergamaschi,et al.  MIXED FINITE ELEMENTS AND NEWTON-TYPE LINEARIZATIONS FOR THE SOLUTION OF RICHARDS' EQUATION , 1999 .

[5]  Zhangxin Chen,et al.  Degenerate two-phase incompressible flow III. Sharp error estimates , 2001, Numerische Mathematik.

[6]  Jan M. Nordbotten,et al.  A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media , 2015, J. Comput. Appl. Math..

[7]  J. Nordbotten,et al.  A convergent mass conservative numerical scheme based on mixed finite elements for two-phase flow in porous media , 2015, 1512.08387.

[8]  Clément Cancès,et al.  An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..

[9]  S. Kräutle,et al.  The semismooth Newton method for multicomponent reactive transport with minerals , 2011 .

[10]  Béatrice Rivière,et al.  Convergence of a Discontinuous Galerkin Method for the Miscible Displacement Equation under Low Regularity , 2011, SIAM J. Numer. Anal..

[11]  Shuyu Sun,et al.  A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation , 2010 .

[12]  Zhangxin Chen,et al.  Fully Discrete Finite Element Analysis of Multiphase Flow in Groundwater Hydrology , 1997 .

[13]  Mazen Saad,et al.  A combined finite volume–nonconforming finite element scheme for compressible two phase flow in porous media , 2013, Numerische Mathematik.

[14]  W. Yong,et al.  A Numerical Approach To Porous Medium Equations , 1996 .

[15]  Clément Cancès,et al.  Improving Newton's Method Performance by Parametrization: The Case of the Richards Equation , 2017, SIAM J. Numer. Anal..

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Carol S. Woodward,et al.  Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media , 2000, SIAM J. Numer. Anal..

[18]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[19]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[20]  Olaf Ippisch,et al.  Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase , 2012, Computational Geosciences.

[21]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[22]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[23]  Sabine Attinger,et al.  Analysis of an Euler implicit‐mixed finite element scheme for reactive solute transport in porous media , 2009 .

[24]  Anthony Michel,et al.  A Finite Volume Scheme for Two-Phase Immiscible Flow in Porous Media , 2003, SIAM J. Numer. Anal..

[25]  Raphaèle Herbin,et al.  Mathematical study of a petroleum-engineering scheme , 2003 .

[26]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[27]  Iuliu Sorin Pop Error Estimates for a Time Discretization Method for the Richards' Equation , 2001 .

[28]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[29]  H. Alt,et al.  Nonsteady flow of water and oil through inhomogeneous porous media , 1985 .

[30]  Clément Cancès,et al.  An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field , 2012, SIAM J. Math. Anal..

[31]  R. E. Showalter,et al.  Nonlinear Degenerate Evolution Equations in Mixed Formulation , 2010, SIAM J. Math. Anal..

[32]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[33]  Todd Arbogast The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow , 1992 .

[34]  B. Rivière,et al.  Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow , 2009 .

[35]  Eun-Jae Park,et al.  Mixed finite element methods for nonlinear second-order elliptic problems , 1995 .

[36]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[37]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[38]  Mario Ohlberger,et al.  Convergence of a Mixed Finite Element - Finite Volume Method for the Two Phase Flow in Porous Media , 2009 .

[39]  Koffi B. Fadimba On existence and uniqueness for a coupled system modeling immiscible flow through a porous medium , 2007 .

[40]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[41]  Marián Slodicka,et al.  A Robust and Efficient Linearization Scheme for Doubly Nonlinear and Degenerate Parabolic Problems Arising in Flow in Porous Media , 2001, SIAM J. Sci. Comput..

[42]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[43]  Shuyu Sun,et al.  ON ITERATIVE IMPES FORMULATION FOR TWO-PHASE FLOW WITH CAPILLARITY IN HETEROGENEOUS POROUS MEDIA , 2010 .

[44]  Martin Vohralík,et al.  A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.

[45]  H. Hellevang Geological Storage of Co2 , 2009 .

[46]  L. Durlofsky A triangle based mixed finite element–finite volume technique for modeling two phase flow through porous media , 1993 .

[47]  Florin A. Radu,et al.  Convergence of MPFA on triangulations and for Richards' equation , 2008 .

[48]  Peter Knabner,et al.  Newton—Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations , 2006 .

[49]  Mladen Jurak,et al.  An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media , 2011 .

[50]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[51]  F. Radu,et al.  Mixed finite elements for the Richards' equation: linearization procedure , 2004 .

[52]  Clément Cancès,et al.  On the time continuity of entropy solutions , 2008, 0812.4765.

[53]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[54]  Stephan Luckhaus,et al.  Flow of Oil and Water in a Porous Medium , 1984 .

[55]  Peter Knabner,et al.  Error estimates for a mixed finite element discretization of some degenerate parabolic equations , 2008, Numerische Mathematik.

[56]  F. Radu,et al.  A study on iterative methods for solving Richards’ equation , 2015, Computational Geosciences.