An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission

[1]  T. Südhof,et al.  Synaptobrevin is essential for fast synaptic-vesicle endocytosis , 2004, Nature Cell Biology.

[2]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[3]  Thomas C. Südhof,et al.  Multiple Roles for the Active Zone Protein RIM1α in Late Stages of Neurotransmitter Release , 2004, Neuron.

[4]  Silvio O Rizzoli,et al.  The Structural Organization of the Readily Releasable Pool of Synaptic Vesicles , 2004, Science.

[5]  Timothy H Murphy,et al.  Miniature Transmitter Release: Accident of Nature or Careful Design? , 2003, Science's STKE.

[6]  M. Gonzalez-Gaitan,et al.  Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release , 2003, The Journal of cell biology.

[7]  Wade G. Regehr,et al.  Quantal events shape cerebellar interneuron firing , 2002, Nature Neuroscience.

[8]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Sun,et al.  Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse , 2002, Nature.

[10]  Yildirim Sara,et al.  Development of Vesicle Pools during Maturation of Hippocampal Synapses , 2002, The Journal of Neuroscience.

[11]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[12]  Alexander M Aravanis,et al.  Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling , 2001, Trends in Neurosciences.

[13]  T. A. Ryan,et al.  Calcium accelerates endocytosis of vSNAREs at hippocampal synapses , 2001, Nature Neuroscience.

[14]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[15]  A. Marty,et al.  Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients , 2000, Nature Neuroscience.

[16]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[17]  R. Nicoll,et al.  Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones , 2000, The Journal of physiology.

[18]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[19]  R. Tsien,et al.  Activity-dependent regulation of synaptic clustering in a hippocampal culture system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  O. Prange,et al.  Correlation of Miniature Synaptic Activity and Evoked Release Probability in Cultures of Cortical Neurons , 1999, The Journal of Neuroscience.

[21]  C. Stevens,et al.  Reversal of synaptic vesicle docking at central synapses , 1999, Nature Neuroscience.

[22]  K. Ikeda,et al.  Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. , 1999, Journal of neurophysiology.

[23]  Ege T. Kavalali,et al.  Kinetics and regulation of fast endocytosis at hippocampal synapses , 1998, Nature.

[24]  R. Burgess,et al.  Distinct Requirements for Evoked and Spontaneous Release of Neurotransmitter Are Revealed by Mutations in theDrosophila Gene neuronal-synaptobrevin , 1998, The Journal of Neuroscience.

[25]  M. Frerking,et al.  Are some minis multiquantal? , 1997, Journal of neurophysiology.

[26]  Stephen J. Smith,et al.  Optical detection of a quantal presynaptic membrane turnover , 1997, Nature.

[27]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[28]  W. Kloot Spontaneous and uniquantal‐evoked endplate currents in normal frogs are indistinguishable. , 1996 .

[29]  WG Regehr,et al.  Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. Tsien,et al.  Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. , 1995, Science.

[31]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[32]  P. De Camilli,et al.  Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons , 1992, The Journal of cell biology.

[33]  J. Molgó,et al.  Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  T. Reese,et al.  EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[35]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[36]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature , 2004 .

[37]  W. Betz,et al.  Intraterminal Ca(2+) and spontaneous transmitter release at the frog neuromuscular junction. , 2001, Journal of neurophysiology.

[38]  W. Betz,et al.  Intraterminal Ca2+ and Spontaneous Transmitter Release at the Frog Neuromuscular Junction , 2001 .

[39]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[40]  W. G. Van der Kloot Spontaneous and uniquantal‐evoked endplate currents in normal frogs are indistinguishable. , 1996, The Journal of physiology.