A method for the numerical solution of the one-dimensional inverse Stefan problem

SummaryIn this paper we suggest the use of complete families of solutions of the heat equation for the numerical solution of the inverse Stefan problem. Our approach leads to linear optimization problems which can be established and solved easily. Convergence results are proved. In a final section the method is applied to some examples.

[1]  R. Ewing,et al.  Numerical approximation of a Cauchy problem for a parabolic partial differential equation , 1979 .

[2]  C. Denson Hill,et al.  Parabolic equations in one space variable and the non-characteristic cauchy problem , 1967 .

[3]  B. Budak,et al.  The solution of the inverse Stefan problem , 1974 .

[4]  David Colton,et al.  Analytic theory of partial differential equations , 1980 .

[5]  Das Inverse Stefan Problem — Ein Vergleich Verschiedener Fragestellungen — , 1982 .

[6]  D. Widder The heat equation , 1975 .

[7]  Peter Jochum,et al.  To the Numerical Solution of an Inverse Stefan Problem in Two Space Variables , 1982 .

[8]  R. Reemtsen,et al.  An approximation technique for the numerical solution of a Stefan problem , 1982 .

[9]  R. Ewing,et al.  A direct numerical procedure for the Cauchy problem for the heat equation , 1976 .

[10]  A. Friedman Remarks on Stefan-Type Free Boundary Problems for Parabolic Equations , 1960 .

[11]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[12]  Jim Douglas,et al.  The Cauchy Problem for the Heat Equation , 1967 .

[13]  C. Pucci Alcune limitazioni per le soluzioni di equazioni paraboliche , 1959 .

[14]  Peter Jochum,et al.  The numerical solution of the inverse Stefan problem , 1980 .

[15]  D. Colton,et al.  The Numerical Solution of the Inverse Stefan Problem in Two Space Variables , 1984 .

[16]  B. Brosowski,et al.  Differentiable dependence upon the data in a one-phase Stefan problem , 1980 .

[17]  Antonio Fasano,et al.  General free-boundary problems for the heat equation, II , 1977 .

[18]  J. Cannon,et al.  Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary , 1971 .

[19]  R. Ewing The Cauchy problem for a linear parabolic partial differential equation , 1979 .

[20]  Peter Jochum,et al.  The inverse Stefan problem as a problem of nonlinear approximation theory , 1980 .

[21]  Maurice Gevrey,et al.  Sur les équations aux dérivées partielles du type parabolique (suite) , 1913 .