Discrete Moving Frames and Discrete Integrable Systems

[1]  Evelyne Hubert,et al.  Rational Invariants of a Group Action , 2013 .

[2]  G. M. Beffa Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds , 2010 .

[3]  Elizabeth L. Mansfield,et al.  On Moving Frames and Noether’s Conservation Laws , 2010, 1006.4660.

[4]  Elizabeth L. Mansfield,et al.  A Practical Guide to the Invariant Calculus , 2010 .

[5]  Aziz Hamdouni,et al.  A new construction for invariant numerical schemes using moving frames , 2010 .

[6]  S. Lobb,et al.  Lagrangian multiform structure for the lattice Gel'fand–Dikii hierarchy , 2009, 0911.1234.

[7]  Jing Ping Wang Lenard scheme for two-dimensional periodic Volterra chain , 2008, 0809.3899.

[8]  Evelyne Hubert,et al.  Differential invariants of a Lie group action: Syzygies on a generating set , 2007, J. Symb. Comput..

[9]  V. Ovsienko,et al.  The Pentagram Map: A Discrete Integrable System , 2008, 0810.5605.

[10]  G. M. Beffa Geometric Hamiltonian Structures on Flat Semisimple Homogeneous Manifolds , 2008 .

[11]  Pilwon Kim,et al.  Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .

[12]  Evelyne Hubert,et al.  Generation properties of Maurer-Cartan invariants , 2007 .

[13]  Irina A. Kogan,et al.  Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..

[14]  Pilwon Kim,et al.  Invariantization of numerical schemes using moving frames , 2007 .

[15]  Irina A. Kogan,et al.  Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..

[16]  R. Yamilov Symmetries as integrability criteria for differential difference equations , 2006 .

[17]  E. Mansfield,et al.  Evolution of curvature invariants and lifting integrability , 2006 .

[18]  S. Attal,et al.  The Hamiltonian approach , 2006 .

[19]  Evelyne Hubert,et al.  Differential Algebra for Derivations with Nontrivial Commutation Rules , 2005 .

[20]  G. M. Beffa Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces , 2005 .

[21]  Elizabeth L. Mansfield,et al.  A Variational Complex for Difference Equations , 2004, Found. Comput. Math..

[22]  M. Hickman,et al.  Computation of densities and fluxes of nonlinear differential‐difference equations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[24]  Irina A. Kogan,et al.  Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .

[25]  Elizabeth L. Mansfield,et al.  Towards approximations which preserve integrals , 2001, ISSAC '01.

[26]  Peter J. Olver,et al.  Joint Invariant Signatures , 2001, Found. Comput. Math..

[27]  P. J. Olver,et al.  Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .

[28]  M. Boutin On orbit dimensions under a simultaneous Lie group action on n copies of a manifold , 2000, math-ph/0009021.

[29]  Peter J. Olvery Moving Frames - in Geometry, Algebra, Computer Vision, and Numerical Analysis , 2000 .

[30]  G. M. Beffa THE THEORY OF DIFFERENTIAL INVARIANTS AND KDV HAMILTONIAN EVOLUTIONS , 1999 .

[31]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[32]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[33]  Madrid,et al.  Invariant differential equations and the Adler–Gel’fand–Dikii bracket , 1996, hep-th/9603199.

[34]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[35]  B. Fuchssteiner,et al.  Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure , 1991 .

[36]  A. Perelomov The Toda Lattice , 1990 .

[37]  B. Kupershmidt,et al.  Discrete lax equations and differential-difference calculus , 1985 .

[38]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[39]  Mark L. Green,et al.  The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .

[40]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[41]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[42]  Phillip A. Griffiths,et al.  On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .

[43]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[44]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[45]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[46]  Peter J. Olver,et al.  Geometric Integration via Multi-space , 2022 .