Discrete Moving Frames and Discrete Integrable Systems
暂无分享,去创建一个
Elizabeth L. Mansfield | Jing Ping Wang | Gloria Marí Beffa | Jing Ping Wang | G. M. Beffa | E. Mansfield
[1] Evelyne Hubert,et al. Rational Invariants of a Group Action , 2013 .
[2] G. M. Beffa. Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds , 2010 .
[3] Elizabeth L. Mansfield,et al. On Moving Frames and Noether’s Conservation Laws , 2010, 1006.4660.
[4] Elizabeth L. Mansfield,et al. A Practical Guide to the Invariant Calculus , 2010 .
[5] Aziz Hamdouni,et al. A new construction for invariant numerical schemes using moving frames , 2010 .
[6] S. Lobb,et al. Lagrangian multiform structure for the lattice Gel'fand–Dikii hierarchy , 2009, 0911.1234.
[7] Jing Ping Wang. Lenard scheme for two-dimensional periodic Volterra chain , 2008, 0809.3899.
[8] Evelyne Hubert,et al. Differential invariants of a Lie group action: Syzygies on a generating set , 2007, J. Symb. Comput..
[9] V. Ovsienko,et al. The Pentagram Map: A Discrete Integrable System , 2008, 0810.5605.
[10] G. M. Beffa. Geometric Hamiltonian Structures on Flat Semisimple Homogeneous Manifolds , 2008 .
[11] Pilwon Kim,et al. Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .
[12] Evelyne Hubert,et al. Generation properties of Maurer-Cartan invariants , 2007 .
[13] Irina A. Kogan,et al. Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..
[14] Pilwon Kim,et al. Invariantization of numerical schemes using moving frames , 2007 .
[15] Irina A. Kogan,et al. Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..
[16] R. Yamilov. Symmetries as integrability criteria for differential difference equations , 2006 .
[17] E. Mansfield,et al. Evolution of curvature invariants and lifting integrability , 2006 .
[18] S. Attal,et al. The Hamiltonian approach , 2006 .
[19] Evelyne Hubert,et al. Differential Algebra for Derivations with Nontrivial Commutation Rules , 2005 .
[20] G. M. Beffa. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces , 2005 .
[21] Elizabeth L. Mansfield,et al. A Variational Complex for Difference Equations , 2004, Found. Comput. Math..
[22] M. Hickman,et al. Computation of densities and fluxes of nonlinear differential‐difference equations , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[23] Y. Suris. The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .
[24] Irina A. Kogan,et al. Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .
[25] Elizabeth L. Mansfield,et al. Towards approximations which preserve integrals , 2001, ISSAC '01.
[26] Peter J. Olver,et al. Joint Invariant Signatures , 2001, Found. Comput. Math..
[27] P. J. Olver,et al. Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .
[28] M. Boutin. On orbit dimensions under a simultaneous Lie group action on n copies of a manifold , 2000, math-ph/0009021.
[29] Peter J. Olvery. Moving Frames - in Geometry, Algebra, Computer Vision, and Numerical Analysis , 2000 .
[30] G. M. Beffa. THE THEORY OF DIFFERENTIAL INVARIANTS AND KDV HAMILTONIAN EVOLUTIONS , 1999 .
[31] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[32] P. Olver,et al. Moving Coframes: I. A Practical Algorithm , 1998 .
[33] Madrid,et al. Invariant differential equations and the Adler–Gel’fand–Dikii bracket , 1996, hep-th/9603199.
[34] Irene Dorfman,et al. Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .
[35] B. Fuchssteiner,et al. Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure , 1991 .
[36] A. Perelomov. The Toda Lattice , 1990 .
[37] B. Kupershmidt,et al. Discrete lax equations and differential-difference calculus , 1985 .
[38] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[39] Mark L. Green,et al. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .
[40] Mark Adler,et al. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .
[41] Mark Kac,et al. On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .
[42] Phillip A. Griffiths,et al. On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .
[43] S. Manakov. Complete integrability and stochastization of discrete dynamical systems , 1974 .
[44] H. Flaschka. On the Toda Lattice. II Inverse-Scattering Solution , 1974 .
[45] H. Flaschka. The Toda lattice. II. Existence of integrals , 1974 .
[46] Peter J. Olver,et al. Geometric Integration via Multi-space , 2022 .