In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks

[1]  Chih-Hao Hsu,et al.  Molecular Level Insight into Enhanced n‐Type Transport in Solution‐Printed Hybrid Thermoelectrics , 2019, Advanced Energy Materials.

[2]  J. Urban,et al.  Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet‐of‐Things Applications , 2019, Advanced Electronic Materials.

[3]  Yonggang Huang,et al.  Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices , 2018, Science Advances.

[4]  Pawan Kumar,et al.  Polymer morphology and interfacial charge transfer dominate over energy-dependent scattering in organic-inorganic thermoelectrics , 2018, Nature Communications.

[5]  J. Ouyang,et al.  Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface , 2018, Nano Energy.

[6]  Lei Fang,et al.  Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics , 2018 .

[7]  Min Ho Lee,et al.  3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks , 2018 .

[8]  W. Goddard,et al.  Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction. , 2018, Journal of the American Chemical Society.

[9]  H. Katz,et al.  High Conductivity and Electron‐Transfer Validation in an n‐Type Fluoride‐Anion‐Doped Polymer for Thermoelectrics in Air , 2017, Advanced materials.

[10]  Jian Zhang,et al.  Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries. , 2017, ACS applied materials & interfaces.

[11]  Pengcheng Li,et al.  Significantly Enhanced Thermoelectric Properties of PEDOT:PSS Films through Sequential Post‐Treatments with Common Acids and Bases , 2017 .

[12]  B. Cho,et al.  High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. , 2016, ACS nano.

[13]  W. Ma,et al.  Enhanced Molecular Packing of a Conjugated Polymer with High Organic Thermoelectric Power Factor. , 2016, ACS applied materials & interfaces.

[14]  Joseph Richardson,et al.  High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals , 2016, Scientific Reports.

[15]  B. Ge,et al.  Tellurium as a high-performance elemental thermoelectric , 2016, Nature Communications.

[16]  J. Bahk,et al.  Flexible thermoelectric materials and device optimization for wearable energy harvesting , 2015 .

[17]  Daoben Zhu,et al.  Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. , 2015, Journal of the American Chemical Society.

[18]  Ali Shakouri,et al.  Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. , 2015, Nano letters.

[19]  K. Uchida,et al.  Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires. , 2014, Journal of the American Chemical Society.

[20]  J. Heremans,et al.  P-type doping of elemental bismuth with indium, gallium and tin: a novel doping mechanism in solids , 2014, 1409.4358.

[21]  Saad Mutashar,et al.  Energy harvesting for the implantable biomedical devices: issues and challenges , 2014, Biomedical engineering online.

[22]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[23]  Yue Wu,et al.  The effects of the size and the doping concentration on the power factor of n-type lead telluride nanocrystals for thermoelectric energy conversion. , 2014, Nano letters.

[24]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[25]  Kevin C. See,et al.  Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport , 2013, Advanced materials.

[26]  Yue Wu,et al.  Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. , 2012, Nano letters.

[27]  Mona Zebarjadi,et al.  Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. , 2012, Nano letters.

[28]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[29]  E. M. Levin,et al.  Chromium as resonant donor impurity in PbTe , 2012 .

[30]  Xianfan Xu,et al.  Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. , 2012, Nano letters.

[31]  J. Heremans,et al.  Titanium forms a resonant level in the conduction band of PbTe , 2011 .

[32]  K. Esfarjani,et al.  Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide , 2011 .

[33]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[34]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[35]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[36]  J. Heremans,et al.  Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power , 2009 .

[37]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[38]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[39]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[40]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[41]  A. Majumdar,et al.  Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. , 2008, Nano letters.

[42]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[43]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[44]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[45]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[46]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[47]  A. Bennett,et al.  A bird's-eye view , 2007, Nature.

[48]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[49]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[50]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[51]  Christof M Niemeyer,et al.  On the generation of free radical species from quantum dots. , 2005, Small.

[52]  D. Gamelin,et al.  Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications , 2005 .

[53]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[54]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[55]  Philippe Guyot-Sionnest,et al.  n-type colloidal semiconductor nanocrystals , 2000, Nature.

[56]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[57]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[62]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[63]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[64]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[65]  H. Kaneko,et al.  On the metallic states in highly conducting iodine-doped polyacetylene , 1990 .

[66]  P. Grosse,et al.  The Masses of Free Holes and Electrons in Tellurium , 1974, April 1.

[67]  G. Dresselhaus,et al.  Raman Spectra and Lattice Dynamics of Tellurium , 1971 .

[68]  R. Ningthoujam,et al.  Synthesis, Characterization, Physical Properties and Applications of Metal Borides , 2021, Handbook on Synthesis Strategies for Advanced Materials.

[69]  Yu-Kwong Kwok,et al.  Energy Harvesting in Internet of Things , 2018, Internet of Everything.

[70]  M. Eltoweissy,et al.  Issues and challenges , 2019, Justice for Children in the Context of Counter-Terrorism.

[71]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[72]  Our Materials Science Correspondent Block Copolymers , 1973, Nature.

[73]  P. Grosse,et al.  Magnetoabsorptionsmessungen an Tellur , 1968 .