Long-Range Electron Transport Donor-Acceptor in Nonlinear Lattices

We study here several simple models of the electron transfer (ET) in a one-dimensional nonlinear lattice between a donor and an acceptor and propose a new fast mechanism of electron surfing on soliton-like excitations along the lattice. The nonlinear lattice is modeled as a classical one-dimensional Morse chain and the dynamics of the electrons are considered in the tight-binding approximation. This model is applied to the processes along a covalent bridge connecting donors and acceptors. First, it is shown that the electron forms bound states with the solitonic excitations in the lattice. These so-called solectrons may move with supersonic speed. In a heated system, the electron transfer between a donor and an acceptor is modeled as a diffusion-like process. We study in detail the role of thermal factors on the electron transfer. Then, we develop a simple model based on the classical Smoluchowski–Chandrasekhar picture of diffusion-controlled reactions as stochastic processes with emitters and absorbers. Acceptors are modeled by an absorbing boundary. Finally, we compare the new ET mechanisms described here with known ET data. We conclude that electron surfing on solitons could be a special fast way for ET over quite long distances.

[1]  Jean-Pierre Launay,et al.  Electrons in Molecules , 2018, Oxford Scholarship Online.

[2]  Manuel G. Velarde,et al.  From polaron to solectron: The addition of nonlinear elasticity to quantum mechanics and its possible effect upon electric transport , 2010, J. Comput. Appl. Math..

[3]  Werner Ebeling,et al.  Electron Trapping by solitons: Classical versus Quantum Mechanical Approach , 2008, Int. J. Bifurc. Chaos.

[4]  Mark A. Ratner,et al.  Electronic properties of DNA , 2001 .

[5]  H. Gray,et al.  Long-range electron transfer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Alan R. Bishop,et al.  Charge trapping in DNA due to intrinsic vibrational hot spots , 2003 .

[7]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[8]  Martin J. Bollinger Electron Relay in Proteins , 2008, Science.

[9]  Werner Ebeling,et al.  High electrical conductivity in nonlinear model lattice crystals mediated by thermal excitation of solectrons , 2014 .

[10]  I. Goklany,et al.  Polarons and conformons. , 1973, Journal of theoretical biology.

[11]  S O Kelley,et al.  Femtosecond dynamics of DNA-mediated electron transfer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. Ebeling,et al.  Electron capture and transport mediated by lattice solitons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[14]  George P. Tsironis,et al.  Polaron solutions and normal-mode analysis in the semiclassical Holstein model , 1998 .

[15]  J. Barton,et al.  Mechanisms for DNA charge transport. , 2010, Chemical reviews.

[16]  戸田 盛和 Theory of nonlinear lattices , 1981 .

[17]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[18]  Alwyn C. Scott,et al.  Davydov's soliton revisited : self-trapping of vibrational energy in protein , 1990 .

[19]  David N Beratan,et al.  Persistence of structure over fluctuations in biological electron-transfer reactions. , 2008, Physical review letters.

[20]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[21]  Werner Ebeling,et al.  Nonlinear Ionic Excitations, Dynamic Bound States, and Nonlinear Currents in a One‐dimensional Plasma , 2005 .

[22]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[23]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[24]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[25]  Alwyn C. Scott,et al.  Thermally generated solitons in a toda lattice model of DNA , 1989 .

[26]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[27]  Hennig Solitonic energy transfer in a coupled exciton-vibron system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  A. Zewail,et al.  Femtosecond direct observation of charge transfer between bases in DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Werner Ebeling,et al.  Electron Dynamics in Tight‐Binding Approximation ‐ the Influence of Thermal Anharmonic Lattice Excitations , 2009 .

[30]  A. Davydov,et al.  Soliton excitations in one‐dimensional molecular systems , 1983 .

[31]  Werner Ebeling,et al.  Electron Transfer and Tunneling from Donor to Acceptor in Anharmonic Crystal Lattices , 2015 .

[32]  Alwyn C. Scott,et al.  Davydov’s Soliton , 1992 .

[33]  V. D. Lakhno,et al.  Hole mobility in a homogeneous nucleotide chain , 2003 .

[34]  Werner Ebeling,et al.  On the temperature dependence of fast electron transport in crystal lattices , 2015 .

[35]  V. N. Likhachev,et al.  “Electron ping-pong” on a one-dimensional lattice: Wave packet motion up to the first reflection , 2013 .

[36]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[37]  P. Hänggi,et al.  Quantum Transport and Dissipation , 1998 .

[38]  V. D. Lakhno,et al.  Electron motion in a Holstein molecular chain in an electric field , 2013, 1304.1026.

[39]  Werner Ebeling,et al.  Nonlinear excitations and electric transport in dissipative Morse-Toda lattices , 2006 .

[40]  M V Volkenstein,et al.  The conformon. , 1972, Journal of theoretical biology.

[41]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry theory and experiment , 1997 .

[42]  Ebeling,et al.  Bound states of electrons with soliton-like excitations in thermal systems ñ adiabatic approximations , 2009 .

[43]  Werner Ebeling,et al.  Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons , 2009 .

[44]  J. Slinker,et al.  DNA charge transport over 34 nm. , 2011, Nature chemistry.

[45]  S. Lindsay,et al.  The speed of sound in DNA , 1984, Biopolymers.

[46]  Владимир Николаевич Лихачев,et al.  “Электронный пинг-понг” на одномерной решетке. Многократные отражения волнового пакета и захват волновой функции акцептором@@@"Electron ping-pong" on a one-dimensional lattice: Multiple reflections of the wave packet and capture of the wave function by an acceptor , 2013 .

[47]  S. Takeno,et al.  Davydov model: The quantum, mixed quantum-classical, and full classical systems , 1997 .

[48]  J J Hopfield,et al.  Electron transfer between biological molecules by thermally activated tunneling. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Harry B Gray,et al.  Electron tunneling through proteins , 2003, Quarterly Reviews of Biophysics.

[50]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[51]  Werner Ebeling,et al.  On the Mathematical Modeling of soliton-Mediated Long-Range electron Transfer , 2010, Int. J. Bifurc. Chaos.

[52]  V. D. Lakhno,et al.  HSSH-model of Hole transfer in DNA , 2005 .

[53]  G. V. Chester,et al.  Solid State Physics , 2000 .

[54]  Werner Ebeling,et al.  Thermal solitons and Solectrons in 1D anharmonic Lattices up to Physiological temperatures , 2008, Int. J. Bifurc. Chaos.

[55]  Mechanism Giese Long-Distance Charge Transport in DNA: The Hopping , 2000 .