Morphological scale-space preserving transforms in many dimensions

The theory of an image decomposition that we refer to as a sieve is developed for images defined in any finite number of dimensions. The decomposition has many desirable properties in- cluding the preservation of scale-space causality and the localiza- tion of sharp-edged objects in the transformation domain. The de- composition has the additional properties of manipulability, which means that it is easy to construct pattern recognition systems, and scale-calibration, which means that it may be used for accurate measurement. © 1996 SPIE and IS&T.

[1]  Luc Vincent,et al.  Morphological Area Openings and Closings for Grey-scale Images , 1994 .

[2]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[3]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[4]  Stephen J. Cox,et al.  Audiovisual speech recognition using multiscale nonlinear image decomposition , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[5]  Ioannis Pitas,et al.  Morphological Shape Decomposition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  J. Andrew Bangham,et al.  Multiscale median and morphological filters for 2D pattern recognition , 1994, Signal Process..

[7]  Alexander Toet,et al.  Graph morphology , 1992, J. Vis. Commun. Image Represent..

[8]  Guido Gerig,et al.  Multiscale detection of curvilinear structures in 2-D and 3-D image data , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  Murat Kunt,et al.  Size-sensitive multiresolution decomposition of images with rank order based filters , 1992, Signal Process..

[10]  Peter F. M. Nacken Openings Can Introduce Zero Crossings in Boundary Curvature , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[12]  Timothy F. Cootes,et al.  A unified approach to coding and interpreting face images , 1995, Proceedings of IEEE International Conference on Computer Vision.

[13]  J. Andrew Bangham,et al.  Multiscale recursive medians, scale-space, and transforms with applications to image processing , 1996, IEEE Trans. Image Process..

[14]  J. Andrew Bangham,et al.  Scale-Space From Nonlinear Filters , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[16]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  J. Andrew Bangham,et al.  A comparison of linear and nonlinear scale-space filters in noise , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[18]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  J. Andrew Bangham,et al.  Properties of a Series of Nested Median Filters, Namely the Data Sieve , 1993, IEEE Trans. Signal Process..

[20]  Arnold W. M. Smeulders,et al.  The morphological structure of images , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[21]  T. G. Campbell,et al.  Sieves and wavelets: multiscale transforms for pattern recognition , 1993, IEEE Winter Workshop on Nonlinear Digital Signal Processing.

[22]  J. A. Bangham,et al.  Multiscale median and morphological filters used for 2D pattern recognition , 1993 .

[23]  J. Goutsias,et al.  Optimal Morphological Pattern Restoration from Noisy Binary Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[25]  Luc Vincent Fast opening functions and morphological granulometries , 1994, Optics & Photonics.

[26]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[27]  Moncef Gabbouj,et al.  The Quality of Edge Preservation by Non-Linear Filters , 1992 .

[28]  Pierre Chardaire,et al.  Multiscale Nonlinear Decomposition: The Sieve Decomposition Theorem , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  G. Matheron Random Sets and Integral Geometry , 1976 .

[30]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  L. Vincent Graphs and mathematical morphology , 1989 .

[32]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  L. Vincent Grayscale area openings and closings, their efficient implementation and applications , 1993 .

[35]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..