Robust flatness-based control of an AGV under varying load and friction conditions

This paper presents the control strategy adopted to ensure low jerk variations in path tracking operations of automated guided vehicles (AGVs) in industrial environments. The system is focused on robustness, performance and ease configuration of the maneuvers. Robustness is improved by combining algebraic techniques for robust intelligent feedback control with differential flatness. Besides, it is easily configurable by the definition of a velocity profile decoupled of geometric path. Some simulated results show the dramatic improvement with respect to more standard flatness-based controllers.

[1]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[2]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[3]  Wei Huo,et al.  Tracking control of wheeled mobile robots with unknown dynamics , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[5]  Danwei Wang,et al.  Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective , 2008, IEEE Transactions on Robotics.

[6]  Danwei Wang,et al.  GPS-Based Tracking Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping , 2008, IEEE/ASME Transactions on Mechatronics.

[7]  Frank L. Lewis,et al.  Control of a nonholomic mobile robot: Backstepping kinematics into dynamics , 1997 .

[8]  Maria Letizia Corradini,et al.  Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects , 2002, J. Field Robotics.

[9]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[10]  Brigitte d'Andréa-Novel,et al.  Robust grey-box closed-loop stop-and-go control , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  Antonio F. Gómez-Skarmeta,et al.  i-Fork: a flexible AGV system using topological and grid maps , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  D. Dawson,et al.  Robust control of a mobile robot system with kinematic disturbances , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[13]  Indra Narayan Kar,et al.  Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[14]  Wanderley Cardoso Celeste,et al.  An adaptive dynamic controller for autonomous mobile robot trajectory tracking , 2008 .

[15]  M. Fliess,et al.  Commande sans modèle et commande à modèle restreint , 2008 .

[16]  Richard M. Murray,et al.  EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS , 1996 .

[17]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[18]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[19]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  M. Fliess,et al.  Intelligent PID controllers , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[21]  Giancarlo Genta,et al.  Motor Vehicle Dynamics: Modeling and Simulation , 1997, Series on Advances in Mathematics for Applied Sciences.

[22]  Michael Defoort,et al.  Experimental Motion Planning and Control for an Autonomous Nonholonomic Mobile Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[23]  Carl D. Crane,et al.  Autonomous ground vehicle path tracking , 2004, J. Field Robotics.

[24]  H. Nijmeijer,et al.  Dynamic input-output decoupling of nonlinear control systems , 1988 .

[25]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[26]  João P. Hespanha,et al.  Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty , 2007, IEEE Transactions on Automatic Control.

[27]  Olivier Chocron,et al.  Flatness-Based Control of a Mechatronic Weed Killer Autonomous Robot , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[28]  Brigitte d'Andréa-Novel,et al.  A diagnosis-based approach for tire-road forces and maximum friction estimation , 2011 .