The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer.

[1]  S. Rosenberg,et al.  Cancer immunotherapy: moving beyond current vaccines , 2004, Nature Medicine.

[2]  George Coukos,et al.  Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival , 2004, Nature Medicine.

[3]  S. Wagner,et al.  CpG motifs are efficient adjuvants for DNA cancer vaccines. , 2004, The Journal of investigative dermatology.

[4]  R. Ulevitch Therapeutics targeting the innate immune system , 2004, Nature Reviews Immunology.

[5]  L. Turka,et al.  Toll-Like Receptor Ligands Directly Promote Activated CD4+ T Cell Survival , 2004, The Journal of Immunology.

[6]  D. Atanackovic,et al.  Characterization of Effusion-Infiltrating T Cells , 2004, Clinical Cancer Research.

[7]  T. Giese,et al.  Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. , 2004, Blood.

[8]  A. Fattorossi,et al.  Neoadjuvant therapy changes the lymphocyte composition of tumor‐draining lymph nodes in cervical carcinoma , 2004, Cancer.

[9]  L. Zitvogel,et al.  Exosomes as Potent Cell-Free Peptide-Based Vaccine. II. Exosomes in CpG Adjuvants Efficiently Prime Naive Tc1 Lymphocytes Leading to Tumor Rejection 1 , 2004, The Journal of Immunology.

[10]  T. Delozier,et al.  Polyadenylic–Polyuridylic Acid Plus Locoregional Radiotherapy Versus Chemotherapy with CMF in Operable Breast Cancer: a 14 Year Follow-up Analysis of a Randomized Trial of the Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) , 2000, Breast Cancer Research and Treatment.

[11]  Hua Yu,et al.  Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells , 2004, Nature Medicine.

[12]  S. Kaye Chemotherapy for ovarian cancer: yesterday, today and tomorrow , 2003, British Journal of Cancer.

[13]  S. H. van der Burg,et al.  Magnitude and polarization of P53‐specific T‐helper immunity in connection to leukocyte infiltration of colorectal tumors , 2003, International journal of cancer.

[14]  A. Nowak,et al.  Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. , 2003, Cancer research.

[15]  G. Coukos,et al.  TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[16]  George Coukos,et al.  Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. , 2003, The New England journal of medicine.

[17]  L. Zitvogel,et al.  Tumor-derived exosomes: a new source of tumor rejection antigens. , 2002, Vaccine.

[18]  S. H. van der Burg,et al.  Established Human Papillomavirus Type 16-Expressing Tumors Are Effectively Eradicated Following Vaccination with Long Peptides1 , 2002, The Journal of Immunology.

[19]  Drew M. Pardoll,et al.  Vaccines: Spinning molecular immunology into successful immunotherapy , 2002, Nature Reviews Immunology.

[20]  Jiayuh Lin,et al.  Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells , 2001, Oncogene.

[21]  R. Flavell,et al.  Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 , 2001, Nature.

[22]  Laurence Zitvogel,et al.  Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming , 2001, Nature Medicine.

[23]  P. V. van Diest,et al.  T cell infiltration and MHC I and II expression in the presence of tumor antigens: An immunohistochemical study in patients with serous epithelial ovarian cancer. , 2001, European journal of obstetrics, gynecology, and reproductive biology.

[24]  H. Hausmaninger,et al.  Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial , 2000, British Journal of Cancer.

[25]  R. Verdijk,et al.  Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. , 1999, Journal of immunology.

[26]  Dirk Schadendorf,et al.  Vaccination of melanoma patients with peptide- or tumorlysate-pulsed dendritic cells , 1998, Nature Medicine.

[27]  D. Carbone,et al.  Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells , 1996, Nature Medicine.

[28]  D. Carbone,et al.  Erratum: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells (Nature Medicine 2, 1096-1103 (1996)) , 1996 .

[29]  R. Freedman,et al.  Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes. , 1996, Cancer treatment and research.

[30]  T. Eberlein,et al.  Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Loveless,et al.  A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. , 1994, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[32]  V. Devita,et al.  A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. , 1976, Journal of the National Cancer Institute.