Regulation of bacterial gene expression by ribosome stalling and rescuing

[1]  Shouguang Jin,et al.  SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling in Pseudomonas aeruginosa , 2015, Molecular microbiology.

[2]  C. Dieterich,et al.  Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. , 2015, Methods.

[3]  Daniel N. Wilson,et al.  The bacterial translation stress response. , 2014, FEMS microbiology reviews.

[4]  Kirsten Jung,et al.  Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site , 2014, Nucleic acids research.

[5]  Peter White,et al.  EF-P Dependent Pauses Integrate Proximal and Distal Signals during Translation , 2014, PLoS genetics.

[6]  Emily R. Gordon,et al.  Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan , 2013, Nucleic acids research.

[7]  Chang Xu,et al.  SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa , 2013, mBio.

[8]  Kirsten Jung,et al.  Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P , 2013, Proceedings of the National Academy of Sciences.

[9]  Daniel N. Wilson,et al.  Nascent peptides that block protein synthesis in bacteria , 2013, Proceedings of the National Academy of Sciences.

[10]  Henning Urlaub,et al.  EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues , 2013, Science.

[11]  Kirsten Jung,et al.  Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches , 2013, Science.

[12]  Daniel N. Wilson,et al.  Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. , 2012, Nature chemical biology.

[13]  C. Hayes,et al.  The tmRNA ribosome-rescue system. , 2012, Advances in protein chemistry and structural biology.

[14]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[15]  Runjun D. Kumar,et al.  PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. , 2010, Molecular cell.

[16]  V. Méjean,et al.  Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis , 2010, Molecular microbiology.

[17]  S. Lory,et al.  The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs , 2009, Molecular microbiology.

[18]  K. Poole,et al.  Translational Control of the Antibiotic Inducibility of the PA5471 Gene Required for mexXY Multidrug Efflux Gene Expression in Pseudomonas aeruginosa , 2009, Journal of bacteriology.

[19]  H. Ramu,et al.  Programmed drug‐dependent ribosome stalling , 2009, Molecular microbiology.

[20]  C. Yanofsky,et al.  Conserved Residues Asp16 and Pro24 of TnaC-tRNAPro Participate in Tryptophan Induction of tna Operon Expression , 2008, Journal of bacteriology.

[21]  D. Court,et al.  The Structure of the R184A Mutant of the Inositol Monophosphatase Encoded by suhB and Implications for Its Functional Interactions in Escherichia coli* , 2007, Journal of Biological Chemistry.

[22]  A. W. Karzai,et al.  Lon Protease Degrades Transfer-Messenger RNA-Tagged Proteins , 2007, Journal of bacteriology.

[23]  R. Sauer,et al.  The tmRNA system for translational surveillance and ribosome rescue. , 2007, Annual review of biochemistry.

[24]  G. H. Reed,et al.  Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. , 2006, Biochemistry.

[25]  K. Poole,et al.  Antibiotic Inducibility of the MexXY Multidrug Efflux System of Pseudomonas aeruginosa: Involvement of the Antibiotic-Inducible PA5471 Gene Product , 2006, Journal of bacteriology.

[26]  K. Poole,et al.  Induction of the MexXY Efflux Pump in Pseudomonas aeruginosa Is Dependent on Drug-Ribosome Interaction , 2005, Journal of bacteriology.

[27]  D. Oliver,et al.  Translocon “Pulling” of Nascent SecM Controls the Duration of Its Translational Pause and Secretion-Responsive secA Regulation , 2003, Journal of bacteriology.

[28]  T. Abo,et al.  SsrA‐mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[29]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[30]  K. Ito,et al.  Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. , 2001, Molecular cell.

[31]  R. Sauer,et al.  SmpB, a unique RNA‐binding protein essential for the peptide‐tagging activity of SsrA (tmRNA) , 1999, The EMBO journal.

[32]  C. Yanofsky,et al.  Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon , 1997, Journal of bacteriology.

[33]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[34]  B. Weisblum,et al.  Insights into erythromycin action from studies of its activity as inducer of resistance , 1995, Antimicrobial agents and chemotherapy.

[35]  B. Weisblum Erythromycin resistance by ribosome modification , 1995, Antimicrobial agents and chemotherapy.

[36]  T. Inada,et al.  Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli. , 1995, Biochimie.

[37]  W. Wickner,et al.  SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion , 1994, Cell.

[38]  C. Georgopoulos,et al.  Analysis of an Escherichia coli dnaB temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. , 1991, The Journal of biological chemistry.

[39]  K. Shiba,et al.  A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli , 1990, Journal of bacteriology.

[40]  K. Shiba,et al.  Mutation that suppresses the protein export defect of the secY mutation and causes cold-sensitive growth of Escherichia coli , 1984, Journal of bacteriology.

[41]  M. Yudkin,et al.  Location of the gene for the low-affinity tryptophan-specific permease of Escherichia coli. , 1982, The Biochemical journal.

[42]  C. Yanofsky,et al.  Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12 , 1981, Journal of bacteriology.

[43]  S. Horinouchi,et al.  Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. , 1980, Proceedings of the National Academy of Sciences of the United States of America.