A Scalable, High‐Throughput, and Environmentally Benign Approach to Polymer Dielectrics Exhibiting Significantly Improved Capacitive Performance at High Temperatures

High‐temperature capability is critical for polymer dielectrics in the next‐generation capacitors demanded in harsh‐environment electronics and electrical‐power applications. It is well recognized that the energy‐storage capabilities of dielectrics are degraded drastically with increasing temperature due to the exponential increase of conduction loss. Here, a general and scalable method to enable significant improvement of the high‐temperature capacitive performance of the current polymer dielectrics is reported. The high‐temperature capacitive properties in terms of discharged energy density and the charge–discharge efficiency of the polymer films coated with SiO2 via plasma‐enhanced chemical vapor deposition significantly outperform the neat polymers and rival or surpass the state‐of‐the‐art high‐temperature polymer nanocomposites that are prepared by tedious and low‐throughput methods. Moreover, the surface modification of the dielectric films is carried out in conjunction with fast‐throughput roll‐to‐roll processing under ambient conditions. The entire fabrication process neither involves any toxic chemicals nor generates any hazardous by‐products. The integration of excellent performance, versatility, high productivity, low cost, and environmental friendliness in the present method offers an unprecedented opportunity for the development of scalable high‐temperature polymer dielectrics.

[1]  Hong Wang,et al.  Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics , 2018, Nano Energy.

[2]  Fei Yan,et al.  Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure , 2018 .

[3]  Hong Wang,et al.  High-Temperature Dielectric Materials for Electrical Energy Storage , 2018, Annual Review of Materials Research.

[4]  B. Dang,et al.  Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles , 2017 .

[5]  Hong Wang,et al.  Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties , 2017 .

[6]  Long-Qing Chen,et al.  High‐Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High‐Temperature Dielectric Materials , 2017, Advanced materials.

[7]  Fei Yan,et al.  Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage , 2017 .

[8]  R. Cariou,et al.  Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon , 2017, Scientific Reports.

[9]  Guangzu Zhang,et al.  Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures , 2016, Proceedings of the National Academy of Sciences.

[10]  K. Seo,et al.  High quality PECVD SiO2 process for recessed MOS-gate of AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistors , 2016 .

[11]  Yu-Lin Kuo,et al.  Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys , 2015 .

[12]  R. Dauskardt,et al.  Dual Precursor Atmospheric Plasma Deposition of Transparent Bilayer Protective Coatings on Plastics. , 2015, ACS applied materials & interfaces.

[13]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[14]  H. Ohmi,et al.  Characterization of Si and SiOx films deposited in very high‐frequency excited atmospheric‐pressure plasma and their application to bottom‐gate thin film transistors , 2015 .

[15]  Jan Bastiaan Bouwstra,et al.  Towards Roll-to-Roll Deposition of High Quality Moisture Barrier Films on Polymers by Atmospheric Pressure Plasma Assisted Process , 2015 .

[16]  Guangzu Zhang,et al.  Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets , 2015 .

[17]  H. Ploehn,et al.  Terthiophene-containing copolymers and homopolymer blends as high-performance dielectric materials. , 2015, ACS applied materials & interfaces.

[18]  Lili Zhang,et al.  High-Temperature Capacitor Polymer Films , 2014, Journal of Electronic Materials.

[19]  Lei Zhu,et al.  Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics. , 2014, The journal of physical chemistry letters.

[20]  Qing Wang,et al.  Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage , 2013, Nature Communications.

[21]  Z. Dang,et al.  Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage , 2013, Advanced materials.

[22]  R. Dauskardt,et al.  Improved adhesion of dense silica coatings on polymers by atmospheric plasma pretreatment. , 2013, ACS applied materials & interfaces.

[23]  B. Shokri,et al.  The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms , 2013 .

[24]  R. Dauskardt,et al.  Atmospheric plasma deposited dense silica coatings on plastics. , 2012, ACS applied materials & interfaces.

[25]  H. Ohmi,et al.  Formation of SiO2/Si structure with low interface state density by atmospheric-pressure VHF plasma oxidation , 2012 .

[26]  R. D'agostino,et al.  Insights into the Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition of Thin Films from Methyldisiloxane Precursors , 2012 .

[27]  A. Dinia,et al.  Organosilicon coatings deposited in atmospheric pressure townsend discharge for gas barrier purpose: effect of substrate temperature on structure and properties. , 2012, ACS applied materials & interfaces.

[28]  F. Reniers,et al.  Atmospheric plasmas for thin film deposition: A critical review , 2012 .

[29]  Hanxing Liu,et al.  Structure, Dielectric Properties and Temperature Stability of BaTiO3–Bi(Mg1/2Ti1/2)O3 Perovskite Solid Solutions , 2011 .

[30]  M. Creatore,et al.  Optical Characterization of Plasma-Deposited SiO2-Like Layers on Anisotropic Polymeric Substrates , 2010 .

[31]  S. A. Starostin,et al.  Smooth and self-similar SiO2-like films on polymers synthesized in roll-to-roll atmospheric pressure-PECVD for gas diffusion barrier applications , 2010 .

[32]  Yang Shen,et al.  Physical Properties of Composites Near Percolation , 2010 .

[33]  Qing Wang,et al.  High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage. , 2010, ACS applied materials & interfaces.

[34]  Junjun Li,et al.  Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage , 2009 .

[35]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[36]  M. Sanden,et al.  Atmospheric Pressure Barrier Discharge Deposition of Silica‐Like Films on Polymeric Substrates , 2007 .

[37]  Yang Cao,et al.  Advanced Dielectrics for Capacitors , 2006 .

[38]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[39]  Camille Petit-Etienne,et al.  Open Air Deposition of SiO2 Films by an Atmospheric Pressure Line‐Shaped Plasma , 2005 .

[40]  R.W. Johnson,et al.  The changing automotive environment: high-temperature electronics , 2004, IEEE Transactions on Electronics Packaging Manufacturing.

[41]  Gilbert Teyssedre,et al.  Description of bipolar charge transport in polyethylene using a fluid model with a constant mobility: model prediction , 2004 .

[42]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[43]  G. Picci,et al.  Status quo and future prospects for metallized polypropylene energy storage capacitors , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[44]  W. J. Sarjeant,et al.  Capacitive components for power electronics , 2001, Proc. IEEE.

[45]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[46]  H. Komiyama,et al.  Thermal desorption spectra of SiO2 films deposited on Si and on thermal SiO2 by tetraethylorthosilicate/O3 atmospheric-pressure chemical vapor deposition , 1999 .

[47]  R. Hill,et al.  A model for bipolar charge transport, trapping and recombination in degassed crosslinked polyethene , 1994 .

[48]  Ying Li,et al.  Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics , 1994 .

[49]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[50]  M. Ieda Electrical Conduction and Carrier Traps in Polymeric Materials , 1983, IEEE Transactions on Electrical Insulation.

[51]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[52]  J. Ryu,et al.  Dielectric properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 film by aerosol deposition for energy storage applications , 2016 .

[53]  M. Looney Analog Dialogue , 2000 .