Molecular Fluorescence Endoscopy Targeting Vascular Endothelial Growth Factor A for Improved Colorectal Polyp Detection
暂无分享,去创建一个
Vasilis Ntziachristos | Maximilian Koch | Gooitzen M van Dam | Jürgen Glatz | Wouter B Nagengast | I. Nagtegaal | V. Ntziachristos | G. V. van Dam | A. Karrenbeld | J. Kleibeuker | J. Glatz | H. Timmer-Bosscha | W. Nagengast | E. Hartmans | P. Garcia-Allende | M. Koch | J. Tjalma | J. Koornstra | Jolien J Tjalma | P Beatriz Garcia-Allende | Elmire Hartmans | Anton G Terwisscha van Scheltinga | Wytske Boersma-van Ek | Yasmijn J van Herwaarden | Tanya M Bisseling | Iris D Nagtegaal | Hetty Timmer-Bosscha | Jan Jacob Koornstra | Arend Karrenbeld | Jan H Kleibeuker | A. T. V. Terwisscha van Scheltinga | T. Bisseling | Y. V. van Herwaarden | W. Boersma-van Ek | H. Timmer‐Bosscha
[1] H. Hollema,et al. Proximal adenomas in hereditary non-polyposis colorectal cancer are prone to rapid malignant transformation , 2002, Gut.
[2] H. Hollema,et al. In Vivo VEGF Imaging with Radiolabeled Bevacizumab in a Human Ovarian Tumor Xenograft , 2007, Journal of Nuclear Medicine.
[3] Siavash Yazdanfar,et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met , 2015, Nature Medicine.
[4] P. Low,et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results , 2011, Nature Medicine.
[5] Thomas D. Wang,et al. Targeted Imaging of Esophageal Neoplasia with a Fluorescently Labeled Peptide: First-in-Human Results , 2013, Science Translational Medicine.
[6] Helmut Neumann,et al. Confocal laser endomicroscopy: technical advances and clinical applications. , 2010, Gastroenterology.
[7] Vasilis Ntziachristos,et al. Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy. , 2013, Biomedical optics express.
[8] Melissa L. Korb,et al. IND-Directed Safety and Biodistribution Study of Intravenously Injected Cetuximab-IRDye800 in Cynomolgus Macaques , 2015, Molecular Imaging and Biology.
[9] E. D. de Vries,et al. Toward molecular imaging-driven drug development in oncology. , 2011, Cancer discovery.
[10] H. Hollema,et al. 89Zr-Bevacizumab PET Visualizes Heterogeneous Tracer Accumulation in Tumor Lesions of Renal Cell Carcinoma Patients and Differential Effects of Antiangiogenic Treatment , 2015, The Journal of Nuclear Medicine.
[11] A. Bansal,et al. Correlation of Epidermal Growth Factor Receptor With Morphological Features of Colorectal Advanced Adenomas: A Pilot Correlative Case Series , 2010, The American journal of the medical sciences.
[12] Eva M. Sevick-Muraca,et al. Single-Dose Intravenous Toxicity Study of IRDye 800CW in Sprague-Dawley Rats , 2010, Molecular Imaging and Biology.
[13] Esa Läärä,et al. Development of colorectal tumors in colonoscopic surveillance in Lynch syndrome. , 2007, Gastroenterology.
[14] E. Kuipers,et al. A back-to-back comparison of white light video endoscopy with autofluorescence endoscopy for adenoma detection in high-risk subjects , 2010, Gut.
[15] Muhammad F Dawwas,et al. Adenoma detection rate and risk of colorectal cancer and death. , 2014, The New England journal of medicine.
[16] Michael Vieth,et al. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. , 2010, Gastroenterology.
[17] Ying Feng,et al. In Vivo Fluorescence-Based Endoscopic Detection of Colon Dysplasia in the Mouse Using a Novel Peptide Probe , 2011, PloS one.
[18] N. Marcon,et al. Missed Adenomas during Colonoscopic Surveillance in Individuals with Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer) , 2008, Cancer Prevention Research.
[19] G. V. van Dongen,et al. Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets , 2011, EJNMMI research.
[20] Rebecca C Fitzgerald,et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus , 2012, Nature Medicine.
[21] E. Paulson,et al. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison , 2005, The Lancet.
[22] M. Watson,et al. Correlating EGFR Expression with Receptor-Binding Properties and Internalization of 64Cu-DOTA-Cetuximab in 5 Cervical Cancer Cell Lines , 2008, Journal of Nuclear Medicine.
[23] Thomas D. Wang,et al. Multispectral endoscopic imaging of colorectal dysplasia in vivo. , 2012, Gastroenterology.
[24] Stephen B Fox,et al. The angiogenic switch for vascular endothelial growth factor (VEGF)‐A, VEGF‐B, VEGF‐C, and VEGF‐D in the adenoma–carcinoma sequence during colorectal cancer progression , 2003, The Journal of pathology.
[25] Vasilis Ntziachristos,et al. Real-time intraoperative fluorescence imaging system using light-absorption correction. , 2009, Journal of biomedical optics.
[26] Martin Goetz,et al. Molecular imaging in endoscopy , 2013, United European gastroenterology journal.
[27] Napoleone Ferrara,et al. Vascular endothelial growth factor: basic science and clinical progress. , 2004, Endocrine reviews.
[28] Jeongmin Choi,et al. Comparison of detection and miss rates of narrow band imaging, flexible spectral imaging chromoendoscopy and white light at screening colonoscopy: a randomised controlled back-to-back study , 2013, Gut.
[29] D. Heresbach,et al. Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies , 2008, Endoscopy.
[30] N. Suzuki,et al. Narrow band imaging for colonoscopic surveillance in hereditary non-polyposis colorectal cancer , 2007, Gut.
[31] S. Cross,et al. The angiogenic switch occurs at the adenoma stage of the adenoma–carcinoma sequence in colorectal cancer , 2007, Gut.
[32] Vasilis Ntziachristos,et al. Intraoperative Near-Infrared Fluorescence Tumor Imaging with Vascular Endothelial Growth Factor and Human Epidermal Growth Factor Receptor 2 Targeting Antibodies , 2011, The Journal of Nuclear Medicine.