Obligatory Role of NR2A for Metaplasticity in Visual Cortex

[1]  D. Lovinger,et al.  Activation of NR2A-Containing NMDA Receptors Is Not Obligatory for NMDA Receptor-Dependent Long-Term Potentiation , 2005, The Journal of Neuroscience.

[2]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[3]  Mark F Bear,et al.  Bidirectional synaptic plasticity: from theory to reality. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[5]  G. Collingridge,et al.  Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression , 2004, The Journal of Neuroscience.

[6]  R. J. Williams,et al.  Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate- generating systems, receptors, and enzymes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[8]  Alison L. Barth,et al.  NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses , 2001, Nature Neuroscience.

[9]  Min Zhuo,et al.  Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory , 2005, Neuron.

[10]  Burton S. Rosner,et al.  Neuropharmacology , 1958, Nature.

[11]  D. Laurie,et al.  Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. , 1994, European journal of pharmacology.

[12]  Y. Yaari,et al.  Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. , 1996, The Journal of physiology.

[13]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[14]  M. Bear,et al.  Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex , 2001, Neuropharmacology.

[15]  M. di Luca,et al.  Hippocampal Synaptic Plasticity Involves Competition between Ca2+/Calmodulin-Dependent Protein Kinase II and Postsynaptic Density 95 for Binding to the NR2A Subunit of the NMDA Receptor , 2001, The Journal of Neuroscience.

[16]  P. Seeburg,et al.  C-Terminal Truncation of NR2A Subunits Impairs Synaptic But Not Extrasynaptic Localization of NMDA Receptors , 2000, The Journal of Neuroscience.

[17]  R. Morris,et al.  Competing for Memory Hippocampal LTP under Regimes of Reduced Protein Synthesis , 2004, Neuron.

[18]  W Singer,et al.  Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex , 1999, The European journal of neuroscience.

[19]  Masahiko Watanabe,et al.  Impairment of Suckling Response, Trigeminal Neuronal Pattern Formation, and Hippocampal LTD in NMDA Receptor ε2 Subunit Mutant Mice , 1996, Neuron.

[20]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[21]  S. Vicini,et al.  Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons , 1998, The Journal of physiology.

[22]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. , 1995, Nature.

[23]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Daw,et al.  The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[26]  J. Hell,et al.  A Developmental Change in NMDA Receptor-Associated Proteins at Hippocampal Synapses , 2000, The Journal of Neuroscience.

[27]  S. Vicini,et al.  Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. , 1998, Journal of neurophysiology.

[28]  M. Bear,et al.  Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression , 2007, Neuropharmacology.

[29]  M. Mishina,et al.  Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor. , 1998, Journal of Neuroscience.

[30]  M. Bear,et al.  Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex , 2007, Neuropharmacology.

[31]  Hongkui Zeng,et al.  Forebrain-Specific Calcineurin Knockout Selectively Impairs Bidirectional Synaptic Plasticity and Working/Episodic-like Memory , 2001, Cell.

[32]  Masahiko Watanabe,et al.  Distinct Spatio‐temporal Distributions of the NMDA Receptor Channel Subunit mRNAs in the Brain , 1993, Annals of the New York Academy of Sciences.

[33]  G. Westbrook,et al.  Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors , 2002, Neuropharmacology.

[34]  Mark F Bear,et al.  Evidence for Altered NMDA Receptor Function as a Basis for Metaplasticity in Visual Cortex , 2003, The Journal of Neuroscience.

[35]  M. Bear,et al.  Experience-dependent modification of synaptic plasticity in visual cortex , 1996, Nature.

[36]  V. Pawlak,et al.  Lack of NMDA Receptor Subtype Selectivity for Hippocampal Long-Term Potentiation , 2005, The Journal of Neuroscience.

[37]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[38]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[39]  N. Daw,et al.  Effect of longer periods of dark rearing on NMDA receptors in cat visual cortex. , 1994, Journal of Neurophysiology.

[40]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit , 1995, Nature.

[41]  G. Rumbaugh,et al.  Increased Exon 5 Expression Alters Extrasynaptic NMDA Receptors in Cerebellar Neurons , 2000, Journal of neurochemistry.

[42]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  J Kerby,et al.  Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. , 1995, Molecular pharmacology.

[44]  N J Sucher,et al.  Assembly with the NR1 Subunit Is Required for Surface Expression of NR3A-Containing NMDA Receptors , 2001, The Journal of Neuroscience.

[45]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[46]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[47]  T. Tsumoto,et al.  NMDA receptors in the visual cortex of young kittens are more effective than those of adult cats , 1987, Nature.

[48]  M. Crair,et al.  Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition , 2001, Neuron.

[49]  M. Mishina,et al.  Attenuation of Focal Ischemic Brain Injury in Mice Deficient in the ε1 (NR2A) Subunit of NMDA Receptor , 1998, The Journal of Neuroscience.

[50]  G. Westbrook,et al.  Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. , 2002, Molecular pharmacology.

[51]  M. Constantine‐Paton,et al.  Activity-Dependent Induction of Tonic Calcineurin Activity Mediates a Rapid Developmental Downregulation of NMDA Receptor Currents , 2000, Neuron.

[52]  M. Sheng,et al.  Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[54]  P. Paoletti,et al.  Relating NMDA Receptor Function to Receptor Subunit Composition: Limitations of the Pharmacological Approach , 2006, The Journal of Neuroscience.

[55]  M. Mauk,et al.  Inhibitory control of LTP and LTD: stability of synapse strength. , 1999, Journal of neurophysiology.

[56]  Y. Jan,et al.  Changing subunit composition of heteromeric NMDA receptors during development of rat cortex , 1994, Nature.

[57]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[58]  Z. Fu,et al.  Deletion of the NR2A subunit prevents developmental changes of NMDA‐mEPSCs in cultured mouse cerebellar granule neurones , 2005, The Journal of physiology.

[59]  G. Rumbaugh,et al.  Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. , 2000, Journal of neurophysiology.

[60]  Michael C. Crair,et al.  A critical period for long-term potentiation at thalamocortical synapses , 1995, Nature.

[61]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[62]  Hisashi Mori,et al.  Separable features of visual cortical plasticity revealed by N-methyl-d-aspartate receptor 2A signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Hiroshi Kadotani,et al.  Motor Discoordination Results from Combined Gene Disruption of the NMDA Receptor NR2A and NR2C Subunits, But Not from Single Disruption of the NR2A or NR2C Subunit , 1996, The Journal of Neuroscience.