On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener
暂无分享,去创建一个
[1] Shlomo Shamai,et al. The intersymbol interference channel: lower bounds on capacity and channel precoding loss , 1996, IEEE Trans. Inf. Theory.
[2] Shlomo Shamai,et al. Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.
[3] Shlomo Shamai,et al. Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.
[4] R. Zamir,et al. Lattice decoding can achieve 1/2 log(1+SNR) on the AWGN channel using nested codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[5] Max H. M. Costa,et al. Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.
[6] Sergio Benedetto,et al. Digital Transmission Theory , 1987 .
[7] Gregory W. Wornell,et al. The duality between information embedding and source coding with side information and some applications , 2003, IEEE Trans. Inf. Theory.
[8] Tamás Linder,et al. Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.
[9] Wei Yu,et al. Sum capacity of a Gaussian vector broadcast channel , 2002, Proceedings IEEE International Symposium on Information Theory,.
[10] Mahesh K. Varanasi,et al. An Information-Theoretic Derivation of the MMSE Decision-Feedback Equalizer , 1998 .
[11] S. Shamai,et al. Nested linear/lattice codes for Wyner-Ziv encoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).
[12] Rüdiger L. Urbanke,et al. Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.
[13] G. David Forney,et al. Lattice and trellis quantization with lattice- and trellis-bounded codebooks - High-rate theory for memoryless sources , 1993, IEEE Trans. Inf. Theory.
[14] N. J. A. Sloane,et al. A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.
[15] G. David Forney,et al. Trellis precoding: Combined coding, precoding and shaping for intersymbol interference channels , 1992, IEEE Trans. Inf. Theory.
[16] J. Cioffi,et al. MMSE Decision-Feedback Equalizers: , 1995 .
[17] John M. Cioffi,et al. MMSE decision-feedback equalizers and coding. I. Equalization results , 1995, IEEE Trans. Commun..
[18] T. Linder,et al. Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .
[19] G. David Forney,et al. Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..
[20] Toby Berger,et al. Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.
[21] Gregory Poltyrev,et al. On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.
[22] Sae-Young Chung,et al. Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.
[23] Hans-Andrea Loeliger,et al. Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.
[24] John M. Cioffi,et al. MMSE decision-feedback equalizers and coding. II. Coding results , 1995, IEEE Trans. Commun..
[25] Uri Erez,et al. Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.
[26] T. Guess,et al. A new successively decodable coding technique for intersymbol-interference channels , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[27] Rudi de Buda,et al. Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..
[28] G. P. Dudevoir,et al. MMSE Decision-Feedback Equalizers and Coding-Part 11: Coding Results , 1995 .
[29] Rajiv Laroia. Coding for intersymbol interference channels-combined coding and precoding , 1996, IEEE Trans. Inf. Theory.
[30] Frank R. Kschischang,et al. Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.
[31] G. Forney,et al. Generalized Decision-Feedback Equalization for Packet Transmission with ISI and Gaussian Noise , 1997 .
[32] R. Zamir,et al. On lattice quantization noise , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[33] G. David Forney,et al. Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..