On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener

We discuss why MMSE estimation arises in lattice-based schemes for approaching the capacity of linear Gaussian channels, and comment on its properties.

[1]  Shlomo Shamai,et al.  The intersymbol interference channel: lower bounds on capacity and channel precoding loss , 1996, IEEE Trans. Inf. Theory.

[2]  Shlomo Shamai,et al.  Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.

[3]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[4]  R. Zamir,et al.  Lattice decoding can achieve 1/2 log(1+SNR) on the AWGN channel using nested codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[5]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[6]  Sergio Benedetto,et al.  Digital Transmission Theory , 1987 .

[7]  Gregory W. Wornell,et al.  The duality between information embedding and source coding with side information and some applications , 2003, IEEE Trans. Inf. Theory.

[8]  Tamás Linder,et al.  Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.

[9]  Wei Yu,et al.  Sum capacity of a Gaussian vector broadcast channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[10]  Mahesh K. Varanasi,et al.  An Information-Theoretic Derivation of the MMSE Decision-Feedback Equalizer , 1998 .

[11]  S. Shamai,et al.  Nested linear/lattice codes for Wyner-Ziv encoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[12]  Rüdiger L. Urbanke,et al.  Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.

[13]  G. David Forney,et al.  Lattice and trellis quantization with lattice- and trellis-bounded codebooks - High-rate theory for memoryless sources , 1993, IEEE Trans. Inf. Theory.

[14]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[15]  G. David Forney,et al.  Trellis precoding: Combined coding, precoding and shaping for intersymbol interference channels , 1992, IEEE Trans. Inf. Theory.

[16]  J. Cioffi,et al.  MMSE Decision-Feedback Equalizers: , 1995 .

[17]  John M. Cioffi,et al.  MMSE decision-feedback equalizers and coding. I. Equalization results , 1995, IEEE Trans. Commun..

[18]  T. Linder,et al.  Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .

[19]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..

[20]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.

[21]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.

[22]  Sae-Young Chung,et al.  Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.

[23]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[24]  John M. Cioffi,et al.  MMSE decision-feedback equalizers and coding. II. Coding results , 1995, IEEE Trans. Commun..

[25]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[26]  T. Guess,et al.  A new successively decodable coding technique for intersymbol-interference channels , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[27]  Rudi de Buda,et al.  Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..

[28]  G. P. Dudevoir,et al.  MMSE Decision-Feedback Equalizers and Coding-Part 11: Coding Results , 1995 .

[29]  Rajiv Laroia Coding for intersymbol interference channels-combined coding and precoding , 1996, IEEE Trans. Inf. Theory.

[30]  Frank R. Kschischang,et al.  Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.

[31]  G. Forney,et al.  Generalized Decision-Feedback Equalization for Packet Transmission with ISI and Gaussian Noise , 1997 .

[32]  R. Zamir,et al.  On lattice quantization noise , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[33]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..