From Rate Distortion Theory to Metric Mean Dimension: Variational Principle
暂无分享,去创建一个
[1] G. Elliott,et al. The C∗-algebra of a minimal homeomorphism of zero mean dimension , 2014, 1406.2382.
[2] A. Velozo,et al. Rate distortion theory, metric mean dimension and measure theoretic entropy , 2017, 1707.05762.
[3] Yonatan Gutman. Embedding topological dynamical systems with periodic points in cubical shifts , 2015, Ergodic Theory and Dynamical Systems.
[4] Hanfeng Li,et al. Mean dimension, mean rank, and von Neumann–Lück rank , 2013, Journal für die reine und angewandte Mathematik (Crelles Journal).
[5] Yonatan Gutman. Mean dimension and Jaworski‐type theorems , 2012, 1208.5248.
[6] M. Tsukamoto. Mean dimension of the dynamical system of Brody curves , 2014, 1410.1143.
[7] David L. Neuhoff,et al. New results on coding of stationary nonergodic sources , 1979, IEEE Trans. Inf. Theory.
[8] E. Lindenstrauss,et al. Mean dimension and an embedding problem: An example , 2014 .
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] Amir Dembo,et al. The rate-distortion dimension of sets and measures , 1994, IEEE Trans. Inf. Theory.
[11] Yihong Wu,et al. Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression , 2010, IEEE Transactions on Information Theory.
[12] P. Walters. A VARIATIONAL PRINCIPLE FOR THE PRESSURE OF CONTINUOUS TRANSFORMATIONS. , 1975 .
[13] L. Carleson,et al. The Collected Works of Arne Beurling , 1989 .
[14] A. Rényi. On the dimension and entropy of probability distributions , 1959 .
[15] Yonatan Gutman,et al. Embedding minimal dynamical systems into Hilbert cubes , 2015, Inventiones mathematicae.
[16] M. Tsukamoto. Large dynamics of Yang–Mills theory: mean dimension formula , 2014, 1407.2058.
[17] Yonina C. Eldar. Sampling Theory: Beyond Bandlimited Systems , 2015 .
[18] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[19] David Ruelle,et al. Ergodic Theory of Axiom a Diffeomorphisms , 1975 .
[20] T. Goodman,et al. Relating Topological Entropy and Measure Entropy , 1971 .
[21] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem , 1999 .
[22] Me Misiurewicz,et al. A short proof of the variational principle for a ZN+ action on a compact space , 1975 .
[23] Yonatan Gutman. Embedding ℤk-actions in cubical shifts and ℤk-symbolic extensions , 2010, Ergodic Theory and Dynamical Systems.
[24] Benjamin Weiss,et al. Mean topological dimension , 2000 .
[25] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[26] B. Costa. Deux exemples sur la dimension moyenne d'un espace de courbes de Brody , 2011, 1110.6082.
[27] C. Villani. Optimal Transport: Old and New , 2008 .
[28] Aaron D. Wyner,et al. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .
[29] H. Vincent Poor,et al. Rate-distortion dimension of stochastic processes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[30] Misha Gromov,et al. Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: I , 1999 .
[31] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[32] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[33] D. Ornstein. Bernoulli shifts with the same entropy are isomorphic , 1970 .
[34] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[35] Chapter 10 – On the Interplay between Measurable and Topological Dynamics , 2004, math/0408328.
[36] Michelle Effros,et al. Variable-rate source coding theorems for stationary nonergodic sources , 1994, IEEE Trans. Inf. Theory.
[37] Hanfeng Li. Sofic mean dimension , 2011, 1105.0140.
[38] Shinichiroh Matsuo,et al. Brody curves and mean dimension , 2011, 1110.6014.
[39] Benjamin Weiss,et al. Entropy is the Only Finitely Observable Invariant , 2006 .
[40] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[41] Y. Katznelson,et al. ON UNIQUE ERGODICITY , 2005 .
[42] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[43] Roy L. Adler,et al. Topological entropy , 2008, Scholarpedia.