Modelling cohesive crack growth in concrete beams using scaled boundary finite element method based on super-element remeshing technique

A super-element remeshing technique is developed to model cohesive crack growth based on the linear asymptotic superposition assumption. The remeshing operation only occurs along the crack path. Mesh size is refined merely at the crack-tip super-element. The stress intensity factors are solved semi-analytically by the scaled boundary finite element method, sufficient accuracy can be ensured. The cohesive tractions are treated as side-face forces, and the induced displacement field can be sought as a particular solution to the governing differential equations. Numerical examples validate the efficiency and accuracy of the proposed approach.

[1]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[2]  Ean Tat Ooi,et al.  A hybrid finite element-scaled boundary finite element method for crack propagation modelling , 2010 .

[3]  R. Borst,et al.  Analysis of Mixed-Mode Fracture in Concrete , 1987 .

[4]  J. Wolf,et al.  The scaled boundary finite element method , 2004 .

[5]  Ean Tat Ooi,et al.  Modelling multiple cohesive crack propagation using a finite element―scaled boundary finite element coupled method , 2009 .

[6]  Chongmin Song,et al.  A super‐element for crack analysis in the time domain , 2004 .

[7]  Ean Tat Ooi,et al.  Modelling crack propagation in reinforced concrete using a hybrid finite element-scaled boundary finite element method , 2011 .

[8]  H. Reinhardt,et al.  Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams , 1999 .

[9]  M. Denda,et al.  Complex variable approach to the BEM for multiple crack problems , 1997 .

[10]  M. Xie,et al.  Energy-Based Cohesive Crack Propagation Modeling , 1995 .

[11]  David A. Cendón,et al.  Modelling the fracture of concrete under mixed loading , 2000 .

[12]  M. Xie,et al.  Energy-based automatic mixed-mode crack-propagation modeling , 1995 .

[13]  Chongmin Song,et al.  Evaluation of power-logarithmic singularities,T-stresses and higher order terms of in-plane singular stress fields at cracks and multi-material corners , 2005 .

[14]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[15]  John P. Wolf,et al.  The scaled boundary finite-element method : a fundamental solution-less boundary-element method , 2001 .

[16]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[17]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .

[18]  Andrew Deeks,et al.  Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method , 2007 .

[19]  Ted Belytschko,et al.  Element-free Galerkin methods for dynamic fracture in concrete , 2000 .

[20]  Jian Fei Chen,et al.  Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods , 2004 .

[21]  Zhenjun Yang,et al.  Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method , 2006 .

[22]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[23]  A. Carpinteri,et al.  Numerical analysis of catastrophic softening behaviour (snap-back instability) , 1989 .

[24]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[25]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[26]  M. H. Aliabadi,et al.  Crack growth analysis in concrete using boundary element method , 1995 .

[27]  D. Rooke,et al.  Numerical Fracture Mechanics , 1990 .

[28]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[29]  Jian Fei Chen,et al.  Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams , 2005 .

[30]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[31]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[32]  Zhenjun Yang,et al.  A comparative study of numerical solutions to non-linear discrete crack modelling of concrete beams involving sharp snap-back , 2004 .

[33]  A numerical Green's function BEM formulation for crack growth simulation , 2005 .

[34]  J. Wolf,et al.  Consistent Infinitesimal Finite-Element Cell Method: Three-Dimensional Vector Wave Equation , 1996 .

[35]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[36]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[37]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[38]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[39]  J. Wolf,et al.  Finite-element modelling of unbounded media , 1996 .

[40]  Andrew Deeks,et al.  Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method , 2007 .

[41]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[42]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .