Electronic structures and strengthening mechanisms of superhard high-entropy diborides

[1]  K. Vecchio,et al.  Development of ultrahigh-entropy ceramics with tailored oxidation behavior , 2021 .

[2]  J. Schoenung,et al.  High entropy silicides: CALPHAD-guided prediction and thin film fabrication , 2021 .

[3]  G. Hilmas,et al.  Superhard high-entropy AlB2-type diboride ceramics , 2021, Scripta Materialia.

[4]  Yanchun Zhou,et al.  Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential , 2021 .

[5]  Yanchun Zhou,et al.  High-entropy ceramics: Present status, challenges, and a look forward , 2021, Journal of Advanced Ceramics.

[6]  Zi-kui Liu,et al.  Integrating data mining and machine learning to discover high-strength ductile titanium alloys , 2021 .

[7]  G. Hilmas,et al.  Effect of Nb content on the phase composition, densification, microstructure, and mechanical properties of high-entropy boride ceramics , 2021 .

[8]  Wei Zhang,et al.  Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics , 2021 .

[9]  Julong He,et al.  High‐pressure sintering of ultrafine‐grained high‐entropy diboride ceramics , 2020 .

[10]  G. Hilmas,et al.  Processing of dense high-entropy boride ceramics , 2020 .

[11]  K. Vecchio,et al.  High-entropy monoborides: Towards superhard materials , 2020, 2007.15454.

[12]  Xue-jian Liu,et al.  Recent development of high-entropy transitional carbides: a review , 2020, Journal of the Ceramic Society of Japan.

[13]  Guo‐Jun Zhang,et al.  Mechanical properties of hot-pressed high-entropy diboride-based ceramics , 2020, Journal of Advanced Ceramics.

[14]  Yanchun Zhou,et al.  Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential , 2020 .

[15]  Tyler J. Harrington,et al.  Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering , 2020 .

[16]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[17]  Tyler J. Harrington,et al.  Dissolving and stabilizing soft WB2 and MoB2 phases into high-entropy borides via boron-metals reactive sintering to attain higher hardness , 2019, Journal of the European Ceramic Society.

[18]  Xingyu Gao,et al.  A structural modeling approach to solid solutions based on the similar atomic environment. , 2018, The Journal of chemical physics.

[19]  L. Gu,et al.  Tuning element distribution, structure and properties by composition in high-entropy alloys , 2019, Nature.

[20]  J. Qiu,et al.  Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction , 2019, Journal of the European Ceramic Society.

[21]  Yanchun Zhou,et al.  Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating , 2019, Journal of Materials Science & Technology.

[22]  Zahed Allahyari,et al.  Computational discovery of hard and superhard materials , 2019, Journal of Applied Physics.

[23]  Shikuan Sun,et al.  Dense high-entropy boride ceramics with ultra-high hardness , 2019, Scripta Materialia.

[24]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[25]  T. Wen,et al.  Synthesis of superfine high-entropy metal diboride powders , 2019, Scripta Materialia.

[26]  Yaxiong Guo,et al.  In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding , 2019, Rare Metals.

[27]  R. Orrú,et al.  Novel processing route for the fabrication of bulk high-entropy metal diborides , 2019, Scripta Materialia.

[28]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[29]  H. Wang,et al.  Revealing the local lattice strains and strengthening mechanisms of Ti alloys , 2018, Computational Materials Science.

[30]  Ya-Ping Wang,et al.  Ab Initio Prediction of Mechanical and Electronic Properties of Ultrahigh Temperature High‐Entropy Ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M = Nb, Mo, Cr) , 2018 .

[31]  Shikuan Yang,et al.  Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates , 2018, Nanotechnology.

[32]  Zi-kui Liu,et al.  Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys , 2018 .

[33]  J. Qiao,et al.  Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy , 2017 .

[34]  Hongquan Song,et al.  Local lattice distortion in high-entropy alloys , 2017 .

[35]  R. Zhao,et al.  Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys , 2017 .

[36]  Shun-Li Shang,et al.  Atomic and electronic basis for the serrations of refractory high-entropy alloys , 2017, npj Computational Materials.

[37]  Zi-kui Liu,et al.  Revealing the Microstates of Body-Centered-Cubic (BCC) Equiatomic High Entropy Alloys , 2017 .

[38]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[39]  R. Saravanan,et al.  Charge distribution around Ba–O and Ti–O bonds in BaTi1−xZrxO3 through powder X-ray diffraction , 2016, Rare Metals.

[40]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[41]  Zi-kui Liu,et al.  Power law scaled hardness of Mn strengthened nanocrystalline AlMn non-equilibrium solid solutions , 2016 .

[42]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[43]  Yong Zhang,et al.  A hexagonal close-packed high-entropy alloy: The effect of entropy , 2016 .

[44]  D. Sciti,et al.  Bulk monolithic zirconium and tantalum diborides by reactive and non-reactive spark plasma sintering , 2016 .

[45]  I. Guillot,et al.  Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy , 2016 .

[46]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[47]  N. Birbilis,et al.  Corrosion behaviour and hardness of in situ consolidated nanostructured Al and Al–Cr alloys produced via high-energy ball milling , 2015 .

[48]  Zi-kui Liu,et al.  Solid-Solution Hardening in Mg-Gd-TM (TM = Ag, Zn, and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function Study , 2015 .

[49]  R. Spolenak,et al.  Ultrastrong ductile and stable high-entropy alloys at small scales , 2015, Nature Communications.

[50]  Yi Wang,et al.  Bonding charge density from atomic perturbations , 2015, J. Comput. Chem..

[51]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[52]  P. Liaw,et al.  Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy , 2015, Nature Communications.

[53]  S. Chakraborty,et al.  Densification, mechanical and tribological properties of ZrB2 by SPS: Effect of pulsed current , 2015 .

[54]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[55]  S. Chakraborty,et al.  Mechanical and thermal properties of hot pressed ZrB2 system with TiB2 , 2014 .

[56]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[57]  K. Sairam,et al.  Reaction spark plasma sintering of niobium diboride , 2014 .

[58]  Hao Lu,et al.  Dependence of the mechanical behavior of alloys on their electron work function—An alternative parameter for materials design , 2013 .

[59]  Yimin Gao,et al.  Anisotropic elastic and thermal properties of titanium borides by first-principles calculations , 2013 .

[60]  H. W. Zhang,et al.  Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel , 2013, Science.

[61]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[62]  Rui Vilar,et al.  Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate , 2012 .

[63]  Dongyang Li,et al.  The correlation between the electron work function and yield strength of metals , 2012 .

[64]  Bo Xu,et al.  Microscopic theory of hardness and design of novel superhard crystals , 2012 .

[65]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[66]  R. Orrú,et al.  Spark plasma synthesis and densification of TaB2 by pulsed electric current sintering , 2011 .

[67]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[68]  Richard B. Kaner,et al.  Tungsten tetraboride, an inexpensive superhard material , 2011, Proceedings of the National Academy of Sciences.

[69]  Jannik C. Meyer,et al.  Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.

[70]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[71]  K. Luo,et al.  Changes of hardness and electronic work function of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass on annealing , 2011 .

[72]  Guo‐Jun Zhang,et al.  Hot Pressed HfB2 and HfB2–20 vol%SiC Ceramics Based on HfB2 Powder Synthesized by Borothermal Reduction of HfO2* , 2010 .

[73]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[74]  A. K. Suri,et al.  Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics , 2009 .

[75]  Antonio Mario Locci,et al.  Reactive Spark Plasma Sintering of rhenium diboride , 2009 .

[76]  A. Stoica,et al.  Power-law scaling and fractal nature of medium-range order in metallic glasses. , 2009, Nature materials.

[77]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[78]  Jiecai Han,et al.  Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations , 2008 .

[79]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[80]  Fangfang Zhang,et al.  Electronegativity identification of novel superhard materials. , 2008, Physical review letters.

[81]  A. L. Ivanovskii,et al.  Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations , 2008, 0804.0897.

[82]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[83]  Dragana Živković,et al.  A new superhard material: Osmium diboride OsB2 , 2006 .

[84]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[85]  C. Woodward,et al.  The Chemistry of Deformation: How Solutes Soften Pure Metals , 2005, Science.

[86]  T. Chin,et al.  Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements , 2004 .

[87]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[88]  W. Johnson,et al.  Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures , 2003 .

[89]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[90]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[91]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[92]  J. Gilman Why diamond is very hard , 2002 .

[93]  X. Chen,et al.  A note on the AlB2 type structure , 2002 .

[94]  S. Dub,et al.  Mechanical properties of cubic BC2N, a new superhard phase , 2001 .

[95]  Lei Wu,et al.  The bond ionicity of MB2 (M = Mg, Ti, V, Cr, Mn, Zr, Hf, Ta, al and Y) , 2001 .

[96]  Ponniah Vajeeston,et al.  Electronic structure, bonding, and ground-state properties of AlB 2 -type transition-metal diborides , 2001 .

[97]  G. S. Upadhyaya,et al.  Synthesis and sintering of TiB2 and TiB2–TiC composite under high pressure , 2000 .

[98]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[99]  T. Durakiewicz,et al.  Work functions of elements expressed in terms of the Fermi energy and the density of free electrons , 1998 .

[100]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[101]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[102]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[103]  N. Yamashita,et al.  Formation of cBN films by ion beam assisted deposition , 1992 .

[104]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[105]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[106]  Schwarz,et al.  Electronic structure of hcp metals. , 1988, Physical review. B, Condensed matter.

[107]  F. Glaser,et al.  Transition metal diborides , 1954 .

[108]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[109]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.