Nod‐like receptors are critical for gut–brain axis signalling in mice

•Nucleotide binding oligomerization domain (Nod)‐like receptors regulate cognition, anxiety and hypothalamic–pituitary–adrenal axis activation. •Nod‐like receptors regulate central and peripheral serotonergic biology. •Nod‐like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour.

[1]  Pedro M. Baptista,et al.  Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates , 2018, Front. Neuroanat..

[2]  L. Quintans-Júnior,et al.  Fos Protein as a Marker of Neuronal Activity: a Useful Tool in the Study of the Mechanism of Action of Natural Products with Analgesic Activity , 2018, Molecular Neurobiology.

[3]  J. Bienenstock,et al.  Mouse Strain Affects Behavioral and Neuroendocrine Stress Responses Following Administration of Probiotic Lactobacillus rhamnosus JB-1 or Traditional Antidepressant Fluoxetine , 2018, Front. Neurosci..

[4]  E. Layunta,et al.  NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors , 2018, Journal of cellular physiology.

[5]  I. Brust-Mascher,et al.  Neuroanatomy of the spleen: Mapping the relationship between sympathetic neurons and lymphocytes , 2017, PloS one.

[6]  B. Greenwood-Van Meerveld,et al.  Psychological stress‐induced colonic barrier dysfunction: Role of immune‐mediated mechanisms , 2017, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[7]  Yu-Qiang Ding,et al.  Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis , 2017, Front. Cell. Neurosci..

[8]  H. Forssberg,et al.  The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior , 2016, Molecular Psychiatry.

[9]  K. Barrett,et al.  Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. , 2016, American journal of physiology. Gastrointestinal and liver physiology.

[10]  P. Luciw,et al.  NOD1/NOD2 signaling links ER stress with inflammation , 2016, Nature.

[11]  P. Rosenstiel,et al.  Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin , 2016, Nature Medicine.

[12]  C. Pariante,et al.  Neuroscience, mental health and the immune system: overcoming the brain-mind-body trichotomy , 2015, Epidemiology and Psychiatric Sciences.

[13]  Qian Wang,et al.  Pervasive pleiotropy between psychiatric disorders and immune disorders revealed by integrative analysis of multiple GWAS , 2015, Human Genetics.

[14]  Eun Joo Kim,et al.  Stress effects on the hippocampus: a critical review , 2015, Learning & memory.

[15]  D. Philpott,et al.  NOD-Like Receptors: Guardians of Intestinal Mucosal Barriers. , 2015, Physiology.

[16]  A. Hart,et al.  Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease: A Review of the Literature , 2015, Digestive Diseases and Sciences.

[17]  R. Hen,et al.  Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors , 2015, Neuropsychopharmacology.

[18]  B. Rinner,et al.  Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers , 2015, Brain, Behavior, and Immunity.

[19]  K. Barrett,et al.  Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[20]  T. Dinan,et al.  GABAB(1) receptor subunit isoforms differentially regulate stress resilience , 2014, Proceedings of the National Academy of Sciences.

[21]  J. Herman,et al.  Novel Aspects of Glucocorticoid Actions , 2014, Journal of neuroendocrinology.

[22]  Cristina M. Alberini,et al.  Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies , 2014, Neurobiology of Learning and Memory.

[23]  H. Suh,et al.  The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity , 2014, PloS one.

[24]  J. Micó,et al.  Fluoxetine: a case history of its discovery and preclinical development , 2014, Expert opinion on drug discovery.

[25]  T. Dinan,et al.  Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain , 2014, Front. Mol. Neurosci..

[26]  José N. Nobrega,et al.  Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects , 2014, Neuroscience & Biobehavioral Reviews.

[27]  V. Théodorou Susceptibility to stress‐induced visceral sensitivity: a bad legacy for next generations , 2013, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[28]  J. Hoffman,et al.  Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets , 2013, Nature Reviews Gastroenterology &Hepatology.

[29]  F. J. Rubio,et al.  Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield , 2013, Front. Cell. Neurosci..

[30]  F. Reichmann,et al.  Environmental Enrichment and Gut Inflammation Modify Stress-Induced c-Fos Expression in the Mouse Corticolimbic System , 2013, PloS one.

[31]  M. Vargas-Luna,et al.  Effect of psychological stress on gastric motility assessed by electrical bio-impedance. , 2012, World journal of gastroenterology.

[32]  D. Philpott,et al.  Commensal and Probiotic Bacteria Influence Intestinal Barrier Function and Susceptibility to Colitis in Nod1−/−;Nod2−/− Mice , 2012, Inflammatory bowel diseases.

[33]  M. Drew,et al.  4‐ to 6‐week‐old adult‐born hippocampal neurons influence novelty‐evoked exploration and contextual fear conditioning , 2012, Hippocampus.

[34]  H. Meltzer,et al.  The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats , 2012, Psychopharmacology.

[35]  H. Meltzer,et al.  The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats , 2012, Psychopharmacology.

[36]  Jason S. Snyder,et al.  Adult hippocampal neurogenesis buffers stress responses and depressive behavior , 2011, Nature.

[37]  A. F. Schinder,et al.  The Timing for Neuronal Maturation in the Adult Hippocampus Is Modulated by Local Network Activity , 2011, The Journal of Neuroscience.

[38]  Y. Charnay,et al.  Brain serotonergic circuitries , 2010, Dialogues in clinical neuroscience.

[39]  G. MacQueen,et al.  Bacterial infection causes stress-induced memory dysfunction in mice , 2010, Gut.

[40]  Jeffrey N. Weiser,et al.  Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity , 2010, Nature Medicine.

[41]  H. Eutamene,et al.  Acute stress increases colonic paracellular permeability in mice through a mast cell-independent mechanism: involvement of pancreatic trypsin. , 2009, Life sciences.

[42]  M. Drew,et al.  Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression , 2009, Neuron.

[43]  Larry R Squire,et al.  Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. , 2009, Learning & memory.

[44]  D. Dougherty,et al.  L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications , 2009, International journal of tryptophan research : IJTR.

[45]  N. Warner,et al.  Function of Nod‐like receptors in microbial recognition and host defense , 2009, Immunological reviews.

[46]  Jaykaran,et al.  Effect of Fluoxetine on Some Cognitive Functions of Patients of Depression , 2009, Indian journal of psychological medicine.

[47]  M. Gareau,et al.  Pathophysiological mechanisms of stress-induced intestinal damage. , 2008, Current molecular medicine.

[48]  J. Crawley,et al.  Behavioral Phenotyping Strategies for Mutant Mice , 2008, Neuron.

[49]  L. Muglia,et al.  Hypothalamic–pituitary–adrenal axis dysregulation and behavioral analysis of mouse mutants with altered glucocorticoid or mineralocorticoid receptor function , 2008, Stress.

[50]  E. Kandel,et al.  Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus , 2006, Proceedings of the National Academy of Sciences.

[51]  Anastassios V. Tzingounis,et al.  Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory , 2006, Neuron.

[52]  M. Segal,et al.  Contrasting Roles of Corticosteroid Receptors in Hippocampal Plasticity , 2006, The Journal of Neuroscience.

[53]  D. Nutt,et al.  Tryptophan metabolism in the central nervous system: medical implications , 2006, Expert Reviews in Molecular Medicine.

[54]  B. McNaughton,et al.  Mapping behaviorally relevant neural circuits with immediate-early gene expression , 2005, Current Opinion in Neurobiology.

[55]  L. Devi,et al.  Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. , 2005, Cellular signalling.

[56]  C. Pariante Glucocorticoid Receptor Function In Vitro in Patients with Major Depression , 2004, Stress.

[57]  Judy H. Cho,et al.  Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis , 2003, Gut.

[58]  S. Pruett Stress and the immune system. , 2003, Pathophysiology : the official journal of the International Society for Pathophysiology.

[59]  M. Hascöet,et al.  The mouse light/dark box test. , 2003, European journal of pharmacology.

[60]  B. Jacobs,et al.  5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus , 2002, Brain Research.

[61]  R. Hen,et al.  Improved efficacy of fluoxetine in increasing hippocampal 5-hydroxytryptamine outflow in 5-HT(1B) receptor knock-out mice. , 2002, European journal of pharmacology.

[62]  Marco Leyton,et al.  The role of serotonin in human mood and social interaction Insight from altered tryptophan levels , 2002, Pharmacology Biochemistry and Behavior.

[63]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[64]  Eric J. Nestler,et al.  Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus , 2000, The Journal of Neuroscience.

[65]  Bruce S. McEwen,et al.  The neurobiology of stress: from serendipity to clinical relevance. , 2000, Brain research.

[66]  S. Watson,et al.  Regulation of Serotonin1A, Glucocorticoid, and Mineralocorticoid Receptor in Rat and Human Hippocampus: Implications for the Neurobiology of Depression , 1998, Biological Psychiatry.

[67]  R. Duman,et al.  Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  O. Meijer,et al.  Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. , 1994, European journal of pharmacology.

[69]  Z. Bian,et al.  TOPIC HIGHLIGHT , 2014 .

[70]  J. Benjamin,et al.  The biology of tryptophan depletion and mood disorders. , 2010, The Israel journal of psychiatry and related sciences.

[71]  J. Mawdsley,et al.  RECENT ADVANCES IN BASIC SCIENCE PSYCHOLOGICAL STRESS IN IBD: NEW INSIGHTS INTO PATHOGENIC AND THERAPEUTIC IMPLICATIONS , 2005 .