GLOBAL ASYMPTOTICS OF THE HAHN POLYNOMIALS

In this paper, we study the asymptotics of the Hahn polynomials Qn(x; α, β, N) as the degree n grows to infinity, when the parameters α and β are fixed and the ratio of n/N = c is a constant in the interval (0, 1). Uniform asymptotic formulas in terms of Airy functions and elementary functions are obtained for z in three overlapping regions, which together cover the whole complex plane. Our method is based on a modified version of the Riemann–Hilbert approach introduced by Deift and Zhou.

[1]  Roderick Wong,et al.  Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach* , 2007 .

[2]  M. W. Wilson,et al.  On the Hahn Polynomials , 1970 .

[3]  Yu Lin,et al.  Global asymptotics of the discrete Chebyshev polynomials , 2012, Asymptot. Anal..

[4]  Roderick Wong,et al.  ASYMPTOTIC EXPANSIONS FOR RIEMANN–HILBERT PROBLEMS , 2008 .

[5]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[6]  R. Beals,et al.  Special Functions: Discrete orthogonal polynomials , 2010 .

[7]  I. Sharapudinov Asymptotic Properties of Orthogonal Hahn Polynomials in a Discrete Variable , 1991 .

[8]  Lecture Notes on Applied Analysis , 2010 .

[9]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[10]  Chunhua Ou,et al.  THE RIEMANN–HILBERT APPROACH TO GLOBAL ASYMPTOTICS OF DISCRETE ORTHOGONAL POLYNOMIALS WITH INFINITE NODES , 2010 .

[11]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[12]  R. Wong,et al.  Uniform asymptotics of the Stieltjes–Wigert polynomials via the Riemann–Hilbert approach , 2006 .

[13]  Jinho Baik,et al.  Discrete Orthogonal Polynomials , 2007, Encyclopedia of Special Functions: The Askey-Bateman Project.

[14]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[15]  Xiang-Sheng Wang,et al.  Global asymptotics of the Meixner polynomials , 2011, Asymptot. Anal..

[16]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[17]  R. Wong,et al.  Uniform Asymptotic Expansions for the Discrete Chebyshev Polynomials , 2011, 1110.2839.

[18]  Roderick Wong,et al.  Special Functions by Richard Beals , 2010 .

[19]  Peter D. Miller,et al.  Discrete orthogonal polynomials: Asymptotics and applications , 2007 .

[20]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[21]  Roderick Wong,et al.  Special Functions: Frontmatter , 2010 .

[22]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .