An approximate solution to the pert problem

Abstract The completion times of a set of paths of a PERT network are expressed as a multivariate normal distribution. Approximations are then proposed for computing the mean and standard deviation for the maximum from a set of multinormal variables. Results show the estimates to be very close to those obtained via simulation.

[1]  S. Elmaghraby On the Expected Duration of PERT Type Networks , 1967 .

[2]  D. Sculli The Completion Time of PERT Networks , 1983 .

[3]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[4]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[5]  Richard J. Schonberger,et al.  Why Projects Are “Always” Late: A Rationale Based on Manual Simulation of a PERT/CPM Network , 1981 .

[6]  J. Kamburowski Normally Distributed Activity Durations in PERT Networks , 1985 .

[7]  Pierre N. Robillard,et al.  The Completion Time of PERT Networks , 1977, Oper. Res..

[8]  M W Sasieni,et al.  A note on PERT times , 1986 .

[9]  Kl Wong,et al.  The maximum and sum of two beta variables and the analysis of PERT networks , 1985 .

[10]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[11]  Thomas M. Cook,et al.  Estimating a Project's Completion Time Distribution Using Intelligent Simulation Methods , 1979 .

[12]  Willis R. Greer,et al.  Normal approximations for the greater of two normal random variables , 1979 .

[13]  D Sculli,et al.  A historical note on PERT times , 1989 .

[14]  Paul R. Kleindorfer,et al.  Bounding Distributions for Stochastic Logic Networks , 1974 .

[15]  Charles E. Clark,et al.  Letter to the Editor—The PERT Model for the Distribution of an Activity Time , 1962 .

[16]  George B. Kleindorfer,et al.  Bounding Distributions for a Stochastic Acyclic Network , 1971, Oper. Res..

[17]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[18]  Zvi Drezner,et al.  A Multivariate Approach to Estimating the Completion Time for PERT Networks , 1986 .