FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module

Abstract The objective of the paper is to present methods and software for the efficient statistical, sensitivity and reliability assessment of engineering problems. Attention is given to small-sample techniques which have been developed for the analysis of computationally intensive problems. The paper shows the possibility of “randomizing” computationally intensive problems in the manner of the Monte Carlo type of simulation. In order to keep the number of required simulations at an acceptable level, Latin Hypercube Sampling is utilized. The technique is used for both random variables and random fields. Sensitivity analysis is based on non-parametric rank-order correlation coefficients. Statistical correlation is imposed by the stochastic optimization technique – simulated annealing. A hierarchical sampling approach has been developed for the extension of the sample size in Latin Hypercube Sampling, enabling the addition of simulations to a current sample set while maintaining the desired correlation structure. The paper continues with a brief description of the user-friendly implementation of the theory within FReET commercial multipurpose reliability software. FReET-D software is capable of performing degradation modeling, in which a large number of reinforced concrete degradation models can be utilized under the main FReET software engine. Some of the interesting applications of the software are referenced in the paper.

[1]  Zdeněk P. Bažant,et al.  Energetic–statistical size effect simulated by SFEM with stratified sampling and crack band model , 2007 .

[2]  Li Ying,et al.  Service life prediction and repair of concrete structures with spatial variability , 2007 .

[3]  K. Tuutti Corrosion of steel in concrete , 1982 .

[4]  Alfred Strauss,et al.  Advanced Life-Cycle Analysis of Existing Concrete Bridges , 2008 .

[5]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[6]  Miroslav Vořechovský,et al.  Optimal singular correlation matrices estimated when the sample size is less than or equal to the number of random variables , 2012 .

[7]  Hid N. Grouni,et al.  Methods of structural safety , 1986 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[10]  Radomir Pukl,et al.  ATENA — A tool for engineering analysis of fracture in concrete , 2002 .

[11]  David Lehký,et al.  Neural Network Based Damage Detection of Dynamically Loaded Structures , 2009, EANN.

[12]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[13]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[14]  Randal B. Bernstein,et al.  Artificial Intelligence: New Research , 2009 .

[15]  Pavla Rovnaníková,et al.  Modeling of Chloride Concentration Effect on Reinforcement Corrosion , 2009, Comput. Aided Civ. Infrastructure Eng..

[16]  ScienceDirect,et al.  Advances in engineering software , 2008, Adv. Eng. Softw..

[17]  Miroslav Vořechovský,et al.  Simulation of simply cross correlated random fields by series expansion methods , 2008 .

[18]  Drahomír Novák,et al.  Role of deterministic and statistical length scales in size effect for quasibrittle failure at crack initiation , 2005 .

[19]  Drahomír Novák,et al.  Computer simulation of concrete bridges , 2012 .

[20]  D. Novák,et al.  CORRELATION CONTROL IN SMALL-SAMPLE MONTE CARLO TYPE SIMULATIONS I: A SIMULATED ANNEALING APPROACH , 2009 .

[21]  Michael Havbro Faber,et al.  Applications of Statistics and Probability in Civil Engineering , 2011 .

[22]  Břetislav Teplý,et al.  Durability assessment of concrete structures: reinforcement depassivation due to carbonation , 2010 .

[23]  David Lehký,et al.  Virtual reliability control of precast prestressed concrete elements using parameters identification and statistical simulation , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[24]  Zdeněk P. Bažant,et al.  Stochastic models for deformation and failure of quasibrittle structures : Recent advances and new directions , 2022 .

[25]  Drahomír Novák,et al.  Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions , 2007 .

[26]  Jon C. Helton,et al.  Extension of Latin hypercube samples with correlated variables , 2008, Reliab. Eng. Syst. Saf..

[27]  Konrad Bergmeister,et al.  Stochastische Parameteridentifikation bei Konstruktionsbeton für die Betonerhaltung , 2004 .

[28]  R. Kielbasa,et al.  Efficient average quality index estimation of integrated circuits by modified Latin hypercube sampling Monte Carlo (MLHSMC) , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[29]  Alfred Strauss,et al.  Reliability/risk assessment of concrete structures: Methodology, software and case study , 2010 .

[30]  Peter Lumb Statistics and Probability in Civil Engineering , 1973 .

[31]  Jan L. Vítek,et al.  Decision-Making Support Based On Virtual Statistical Modelling: Case Study Of Large Subway Tunnels Launching , 2006 .

[32]  Drahomír Novák,et al.  Efficient random fields simulation for stochastic FEM analyses , 2003 .

[33]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[34]  M. Vořechovský Correlation control in small sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness , 2012 .

[35]  T. Luping,et al.  On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete , 2007 .

[36]  Miroslav Vořechovský,et al.  Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics , 2007 .

[37]  V.,et al.  IDENTIFICATION OF SHEAR WALL FAILURE MODE , 2004 .

[38]  Michael N. Fardis,et al.  Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation , 1992 .

[39]  Vladimir Cervenka,et al.  Global Safety Format for Nonlinear Calculation of Reinforced Concrete , 2008 .

[40]  Bretislav Teply,et al.  Probabilistic Assessment of Concrete Structure Durability under Reinforcement Corrosion Attack , 2010 .

[41]  David Lehký,et al.  Solving Inverse Structural Reliability Problem Using Artificial Neural Networks and Small-Sample Simulation , 2012 .

[42]  Miroslav Vořechovský,et al.  Computational modeling of size effects in concrete specimens under uniaxial tension , 2008 .

[43]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[44]  Daniel Straub Reliability updating with inspection and monitoring data in deteriorating reinforced concrete slabs , 2011 .

[45]  Palle Thoft-Christensen,et al.  Safety, Reliability and Risk of Structures, Infrastructures and Engineering Systems , 2009 .

[46]  Alfred Strauss,et al.  Reliability assessment of concrete bridges , 2012 .

[47]  R. Chudoba,et al.  Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs , 2013, Comput. Phys. Commun..

[48]  K. Bergmeister,et al.  Structural assessment and reliability analysis for existing engineering structures, theoretical background , 2009 .

[49]  Konrad Bergmeister,et al.  Ansatz zur Beurteilung von chloridbelasteten Stahlbetonbauwerken mit Bewertung der Restlebensdauer / Approach for the assessment of concrete structures subjected to chloride induced deteriotation , 2010 .

[50]  M Voechovsk Correlation in probabilistic simulation , 2011 .

[51]  Michal Šejnoha,et al.  Stochastic analysis of failure of earth structures , 2007 .

[52]  David Lehký,et al.  ANN inverse analysis based on stochastic small-sample training set simulation , 2006, Eng. Appl. Artif. Intell..

[53]  David Lehký,et al.  Determination of statistical material parameters of concrete using fracture test and inverse analysis based on FraMePID-3 PB tool , 2012 .

[54]  Drahomír Novák,et al.  Statistical size effect in quasibrittle materials: Computation and extreme value theory , 2004 .

[55]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[56]  Konrad Bergmeister,et al.  Dynamic damage identification of Colle Isarco viaduct , 2008 .

[57]  Vladimir Cervenka,et al.  SHEAR FAILURE OF LARGE LIGHTLY REINFORCED CONCRETE BEAMS: PART II – ASSESSMENT OF GLOBAL SAFETY OF RESISTANCE , 2009 .

[58]  D. Huntington,et al.  Improvements to and limitations of Latin hypercube sampling , 1998 .

[59]  David Lehký,et al.  Jointless bridge: Determination of fracture mechanical parameters values for nonlinear analysis , 2010 .

[60]  Niels Olhoff,et al.  Sensitivity analysis of structures , 1997 .

[61]  Dan M. Frangopol,et al.  Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data , 2008, Reliab. Eng. Syst. Saf..