Huygens Metasurface Holograms with the Modulation of Focal Energy Distribution

Huygens metasurface, an implementation of Huygens principle with metasurface, shows great potential in the manipulation of electromagnetic wave by elaborately designed subwavelength scale metaatoms with full phase coverage and high transmission amplitude. Here, a multiphase hologram with Huygens metasurface is demonstrated in microwave regime, and a novel algorithm method is proposed to modulate energy distribution among focal points. The proof‐of‐concept experiments show superior microwave holographic images with 89% transmittance efficiency, 59% imaging efficiency, and 1.65 root‐mean‐square error of focal intensity ratio. The proposed Huygens metasurface hologram expands the route to microwave applications for holographic technologies, including computer‐generated holograms, antennas, security, and data storage.

[1]  Spacial Energy Distribution Manipulation with Multi-focus Huygens Metamirror , 2017, Scientific Reports.

[2]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[3]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[4]  Zach DeVito,et al.  Opt , 2017 .

[5]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[6]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[7]  G. Eleftheriades,et al.  Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. , 2013, Optics express.

[8]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[9]  Andrea Alù,et al.  Ultrathin Pancharatnam–Berry Metasurface with Maximal Cross‐Polarization Efficiency , 2015, Advanced materials.

[10]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[11]  Zhang Xichao,et al.  空間的に変動する減衰と非断熱トルクを持つNanotrackにおける磁気スキルミオン輸送【Powered by NICT】 , 2017 .

[12]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[13]  Junjie Li,et al.  Dielectric Huygens’ Metasurface for High-Efficiency Hologram Operating in Transmission Mode , 2016, Scientific Reports.

[14]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[15]  Yijun Feng,et al.  Passive Metasurface for Reflectionless and Arbitary Control of Electromagnetic Wave Transmission , 2015, IEEE Transactions on Antennas and Propagation.

[16]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[17]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[18]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[19]  Jinghua Teng,et al.  Visible‐Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices , 2016, Advanced materials.

[20]  Yan Zhang,et al.  Ultrathin Metasurface Laser Beam Shaper , 2014 .

[21]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[22]  G. Eleftheriades,et al.  Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation , 2014, IEEE Transactions on Antennas and Propagation.

[23]  G. Bally,et al.  Digital Holographic Microscopy , 2007, PhotonicsViews.

[24]  Yuri S. Kivshar,et al.  Grayscale transparent metasurface holograms , 2016 .

[25]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[26]  Weiping Cai,et al.  Plasmonic holographic imaging with V-shaped nanoantenna array. , 2013, Optics express.

[27]  Jacob Scheuer,et al.  Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. , 2014, Nano letters.

[28]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .