Orthonormal bases of compactly supported wavelets

We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regularity. The order of regularity increases linearly with the support width. We start by reviewing the concept of multiresolution analysis as well as several algorithms in vision decomposition and reconstruction. The construction then follows from a synthesis of these different approaches.

[1]  W. E. H. B.,et al.  Aufgaben und Lehrsätze aus der Analysis. , 1925, Nature.

[2]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[3]  A. Calderón Intermediate spaces and interpolation, the complex method , 1964 .

[4]  J. Klauder,et al.  Unitary Representations of the Affine Group , 1968 .

[5]  J. Klauder,et al.  Continuous Representation Theory Using the Affine Group , 1969 .

[6]  A. Calderón,et al.  Parabolic maximal functions associated with a distribution, II , 1977 .

[7]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[8]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[9]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[10]  Thierry Paul,et al.  Functions analytic on the half‐plane as quantum mechanical states , 1984 .

[11]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[12]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[13]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[14]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[15]  M. Vetterli Filter banks allowing perfect reconstruction , 1986 .

[16]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[18]  Mark J. T. Smith,et al.  A new filter bank theory for time-frequency representation , 1987, IEEE Trans. Acoust. Speech Signal Process..

[19]  P. Federbush,et al.  Ondelettes and phase cell cluster expansions, a vindication , 1987 .

[20]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[21]  Richard Kronland-Martinet,et al.  Detection of abrupt changes in sound signals with the help of wavelet transforms , 1987 .

[22]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[23]  P. Federbush Quantum field theory in ninety minutes , 1987 .

[24]  P. P. Vaidyanathan,et al.  Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks , 1988, IEEE Trans. Acoust. Speech Signal Process..

[25]  Guy Battle Phase space localization theorem for ondelettes , 1989 .

[26]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[27]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.