Approaches to Three‐Dimensional Quantitative Structure‐Activity Relationships

[1]  A. Doweyko,et al.  Three-dimensional pharmacophores from binding data. , 1994, Journal of medicinal chemistry.

[2]  Peter Willett,et al.  Designing bioactive molecules : three-dimensional techniques and applications , 1998 .

[3]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[4]  D. Walters,et al.  Case studies of the application of molecular shape analysis to elucidate drug action , 1986 .

[5]  Andrew C. Good,et al.  Utilization of Gaussian functions for the rapid evaluation of molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[6]  D. Manallack,et al.  Statistics using neural networks: chance effects. , 1993, Journal of medicinal chemistry.

[7]  Ki Hwan Kim 3D-Quantitative Structure-Activity Relationships: Description of Electronic Effects Directly from 3D Structures Using a GRID-Comparative Molecular Field Analysis (CoMFA) Approach , 1992 .

[8]  A J Hopfinger,et al.  Inhibition of dihydrofolate reductase: structure-activity correlations of quinazolines based upon molecular shape analysis. , 1981, Journal of medicinal chemistry.

[9]  A. N. Jain,et al.  Compass: predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. , 1994, Journal of medicinal chemistry.

[10]  A. Vedani,et al.  Pseudo-receptor modeling: a new concept for the three-dimensional construction of receptor binding sites. , 1993, Journal of receptor research.

[11]  Ajay A unified framework for using neural networks to build QSARs. , 1993, Journal of medicinal chemistry.

[12]  3D‐Quantitative Structure‐Activity Relationships: Investigation of Steric Effects with Descriptors Directly from 3D Structures Using a Comparative Molecular Field Analysis (CoMFA) Approach , 1992 .

[13]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[14]  Ronald T. Borchardt,et al.  A Correlation Between the Permeability Characteristics of a Series of Peptides Using an in Vitro Cell Culture Model (Caco-2) and Those Using an in Situ Perfused Rat Ileum Model of the Intestinal Mucosa , 1993, Pharmaceutical Research.

[15]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[16]  Gordon M. Crippen,et al.  Voronoi binding site models: Calculation of binding modes and influence of drug binding data accuracy , 1989 .

[17]  T. Halgren,et al.  A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. , 1995, Journal of medicinal chemistry.

[18]  Tudor I. Oprea,et al.  Three-dimensional quantitative structure-activity relationship of human immunodeficiency virus (I) protease inhibitors. 2. Predictive power using limited exploration of alternate binding modes. , 1994, Journal of medicinal chemistry.

[19]  D. Rogers,et al.  Receptor surface models. 2. Application to quantitative structure-activity relationships studies. , 1995, Journal of medicinal chemistry.

[20]  G M Crippen,et al.  General distance geometry three-dimensional receptor model for diverse dihydrofolate reductase inhibitors. , 1984, Journal of medicinal chemistry.

[21]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[22]  W. Dunn,et al.  Genetic Partial Least Squares in QSAR , 1996 .

[23]  A J Hopfinger,et al.  QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase. , 1992, Journal of medicinal chemistry.

[24]  A. Hopfinger Computer-assisted drug design. , 1985, Journal of medicinal chemistry.

[25]  A J Hopfinger,et al.  Theory and application of molecular potential energy fields in molecular shape analysis: a quantitative structure--activity relationship study of 2,4-diamino-5-benzylpyrimidines as dihydrofolate reductase inhibitors. , 1983, Journal of medicinal chemistry.

[26]  J. Scott Dixon,et al.  A good ligand is hard to find: Automated docking methods , 1993 .

[27]  W J Dunn,et al.  A generalized formalism of three-dimensional quantitative structure-property relationship analysis for flexible molecules using tensor representation. , 1994, Journal of medicinal chemistry.

[28]  L. Kier,et al.  Nature of Anionic or α‐Site of Cholinesterase , 1975 .

[29]  G M Crippen,et al.  Quantitative structure-activity relationships by distance geometry: systematic analysis of dihydrofolate reductase inhibitors. , 1980, Journal of medicinal chemistry.

[30]  Garland R. Marshall,et al.  3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries , 1993 .

[31]  D. E. Patterson,et al.  Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies , 1988 .

[32]  Thomas G. Dietterich,et al.  Compass: A shape-based machine learning tool for drug design , 1994, J. Comput. Aided Mol. Des..

[33]  Y. Martin,et al.  Direct prediction of dissociation constants (pKa's) of clonidine-like imidazolines, 2-substituted imidazoles, and 1-methyl-2-substituted-imidazoles from 3D structures using a comparative molecular field analysis (CoMFA) approach. , 1991, Journal of medicinal chemistry.

[34]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[35]  Babu Joseph,et al.  Exploratory data analysis: A comparison of statistical methods with artificial neural networks , 1992 .

[36]  D. Manallack,et al.  Analysis of linear and nonlinear QSAR data using neural networks. , 1994, Journal of medicinal chemistry.

[37]  Tudor I. Oprea,et al.  Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. , 1993, Journal of medicinal chemistry.

[38]  Tudor I. Oprea,et al.  Comparison of the Minimal Steric Difference (MTD) and Comparative Molecular Field Analysis (CoMFA) Methods for Analysis of Binding of Steroids to Carrier Proteins , 1993 .

[39]  Y. Martin,et al.  Quantitative drug design , 1978 .

[40]  David J. Livingstone,et al.  The Use of Artificial Neural Networks in QSAR , 1992 .

[41]  R. Wade,et al.  Prediction of drug binding affinities by comparative binding energy analysis , 1995 .

[42]  Ki Hwan Kim,et al.  Calculation of hydrophobic parameters directly from three-dimensional structures using comparative molecular field analysis , 1995, J. Comput. Aided Mol. Des..

[43]  Daniel A. Gschwend,et al.  Molecular docking towards drug discovery , 1996, Journal of molecular recognition : JMR.

[44]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .

[45]  Z. Simon,et al.  MTD Calculations on Quantitative Structure-Activity Relationships of Steroids Binding to the Progesterone Receptor , 1987, Zeitschrift für Naturforschung C - A Journal of Biosciences.

[46]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[47]  Dudley H. Williams,et al.  The cost of conformational order: entropy changes in molecular associations , 1992 .

[48]  A. Good,et al.  Structure-activity relationships from molecular similarity matrices. , 1993, Journal of medicinal chemistry.

[49]  W. G. Richards,et al.  Rapid evaluation of shape similarity using Gaussian functions , 1993, J. Chem. Inf. Comput. Sci..

[50]  Mark von Itzstein,et al.  A structural and energetics analysis of the binding of a series of N-acetylneuraminic-acid-based inhibitors to influenza virus sialidase , 1996, J. Comput. Aided Mol. Des..

[51]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[52]  M C Nicklaus,et al.  Conformational changes of small molecules binding to proteins. , 1995, Bioorganic & medicinal chemistry.

[53]  A J Hopfinger,et al.  Inhibition of dihydrofolate reductase: structure-activity correlations of 2,4-diamino-5-benzylpyrimidines based upon molecular shape analysis. , 1981, Journal of medicinal chemistry.

[54]  Garland R. Marshall,et al.  The Conformational Parameter in Drug Design: The Active Analog Approach , 1979 .

[55]  F. Gago,et al.  The binding of benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics study and quantitative structure-activity relationships. , 1989, Journal of medicinal chemistry.

[56]  Charles Tanford,et al.  The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1991 .

[57]  Matthew Clark,et al.  The Probability of Chance Correlation Using Partial Least Squares (PLS) , 1993 .

[58]  A. H. Guenther,et al.  J. C. Martin on pulsed power , 1996 .

[59]  A. Hopfinger A general QSAR for dihydrofolate reductase inhibition by 2,4-diaminotriazines based upon molecular shape analysis. , 1981, Archives of biochemistry and biophysics.

[60]  N. Tomioka,et al.  A receptor model for tumor promoters: rational superposition of teleocidins and phorbol esters. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Ettore Novellino,et al.  Comparative Molecular Field Analysis on a Set of Muscarinic Agonists , 1991 .

[62]  G M Crippen,et al.  Combined distance geometry analysis of dihydrofolate reductase inhibition by quinazolines and triazines. , 1983, Journal of medicinal chemistry.

[63]  Z. Simon,et al.  Structure-activity Relations in Gestagenic Steroids by the MTD Method. The Case of Hard Molecules and Soft Receptors , 1992 .

[64]  Catherine Burt,et al.  The application of molecular similarity calculations , 1990 .

[65]  J. Gasteiger,et al.  Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks , 1995 .

[66]  James P. Snyder,et al.  Drug Modeling at Cell Membrane Receptors: The Concept of Pseudoreceptors , 1992 .

[67]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[68]  Bruce L. Bush,et al.  Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA , 1993, J. Comput. Aided Mol. Des..

[69]  Hans-Dieter Höltje,et al.  Theoretical Investigations on Interactions Between Pharmacon Molecules and Receptor Models V: Construction of a Model for the Ribosomal Binding Site of Chloramphenicol , 1984 .

[70]  Ki Hwan Kim Use of the hydrogen-bond potential function in comparative molecular field analysis (CoMFA): An extension of CoMFA , 1993 .

[71]  L B Kier,et al.  Sweet taste receptor studies using model interaction energy calculations. , 1974, Journal of pharmaceutical sciences.

[72]  J. Aqvist,et al.  A new method for predicting binding affinity in computer-aided drug design. , 1994, Protein engineering.

[73]  Gennady M Verkhivker,et al.  Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. , 1995, Protein engineering.

[74]  Hugo Kubinyi,et al.  3D QSAR in drug design : theory, methods and applications , 2000 .

[75]  Anton J. Hopfinger,et al.  Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[76]  G R Marshall,et al.  3D-QSAR: a current perspective. , 1995, Trends in pharmacological sciences.

[77]  Alan B. Forsythe,et al.  Strategy in drug design. Cluster anlysis as an aid in the selection of substituents , 1973 .

[78]  Tudor I. Oprea,et al.  Theoretical and Practical Aspects of Three‐Dimensional Quantitative Structure‐Activity Relationships , 2007 .

[79]  G D Diana,et al.  CoMFA analysis of the interactions of antipicornavirus compounds in the binding pocket of human rhinovirus-14. , 1992, Journal of medicinal chemistry.

[80]  T R Stouch,et al.  Three-dimensional quantitative structure-activity relationships of sulfonamide endothelin inhibitors. , 1995, Journal of medicinal chemistry.

[81]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[82]  A. C. Good,et al.  The utilization of gaussian functions for the rapid evaluation of molecular similarity , 1993 .

[83]  S. Muresan,et al.  Comparative Structure-Affinity Relations by MTD for Binding of Cycloadenosine Monophosphate Derivatives to Protein Kinase Receptors , 1995 .

[84]  A. Hopfinger,et al.  QSAR and molecular shape analyses of three series of 1-(phenylcarbamoyl)-2-pyrazoline insecticides , 1994 .

[85]  A. Hopfinger A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis , 1980 .

[86]  Ulf Norinder,et al.  Experimental design based 3-D QSAR analysis of steroid-protein interactions: Application to human CBG complexes , 1990, J. Comput. Aided Mol. Des..

[87]  A. Ghose,et al.  Use of physicochemical parameters in distance geometry and related three-dimensional quantitative structure-activity relationships: a demonstration using Escherichia coli dihydrofolate reductase inhibitors. , 1985, Journal of medicinal chemistry.

[88]  A. Debnath,et al.  Mechanistic interpretation of the genotoxicity of nitrofurans (antibacterial agents) using quantitative structure-activity relationships and comparative molecular field analysis. , 1993, Journal of medicinal chemistry.

[89]  A. Ghose,et al.  Structural mimicry of adenosine by the antitumor agents 4-methoxy- and 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine as viewed by a molecular modeling method. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[91]  G M Crippen,et al.  Distance geometry approach to rationalizing binding data. , 1979, Journal of medicinal chemistry.

[92]  Hxugo Kubiny Variable Selection in QSAR Studies. I. An Evolutionary Algorithm , 1994 .

[93]  Richards Wg,et al.  QSAR's from similarity matrices. Technique validation and application in the comparison of different similarity evaluation methods. , 1993 .

[94]  W J Dunn,et al.  Construction of a molecular shape analysis-three-dimensional quantitative structure-analysis relationship for an analog series of pyridobenzodiazepinone inhibitors of muscarinic 2 and 3 receptors. , 1994, Journal of medicinal chemistry.

[95]  K. H. Kim,et al.  3D-Quantitative Structure-Activity Relationships: Nonlinear Dependence Described Directly from 3D Structures Using a Comparative Molecular Field Analysis (CoMFA) Approach , 1992 .

[96]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[97]  G M Crippen,et al.  Quantitative structure-activity relationships by distance geometry: thyroxine binding site. , 1981, Journal of medicinal chemistry.

[98]  Robert B. Hermann,et al.  OVID and SUPER: Two overlap programs for drug design , 1991, J. Comput. Aided Mol. Des..

[99]  Sherry L. Mowbray,et al.  Sugar Recognition by a Glucose/Galactose Receptor , 1995, The Journal of Biological Chemistry.

[100]  Jürgen Brickmann,et al.  A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces , 1993, J. Comput. Aided Mol. Des..

[101]  A. Hopfinger,et al.  Intrinsic mutagenicity of polycyclic aromatic hydrocarbons: A quantitative structure activity study based upon molecular shape analysis , 1983 .

[102]  Matthew Clark,et al.  Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases , 1990 .

[103]  Simon K. Kearsley,et al.  An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap , 1990 .

[104]  J. Topliss,et al.  Chance factors in studies of quantitative structure-activity relationships. , 1979, Journal of medicinal chemistry.

[105]  Glen Eugene Kellogg,et al.  HINT: A new method of empirical hydrophobic field calculation for CoMFA , 1991, J. Comput. Aided Mol. Des..

[106]  G M Crippen,et al.  Modeling the benzodiazepine receptor binding site by the general three-dimensional structure-directed quantitative structure-activity relationship method REMOTEDISC. , 1990, Molecular pharmacology.

[107]  G R Marshall,et al.  Three-dimensional quantitative structure-activity relationship of angiotesin-converting enzyme and thermolysin inhibitors. II. A comparison of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. , 1993, Journal of medicinal chemistry.

[108]  H. Kubinyi QSAR : Hansch analysis and related approaches , 1993 .

[109]  L. Johnson,et al.  Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection. , 1995, Acta crystallographica. Section D, Biological crystallography.

[110]  B D Silverman,et al.  Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. , 1996, Journal of medicinal chemistry.

[111]  Ferran Sanz,et al.  MEPSIM: A computational package for analysis and comparison of molecular electrostatic potentials , 1993, J. Comput. Aided Mol. Des..

[112]  David J. Livingstone,et al.  Relating biological activity to chemical structure using neural networks , 1995 .

[113]  Y. Martin,et al.  PLS analysis of distance matrices to detect nonlinear relationships between biological potency and molecular properties. , 1995, Journal of medicinal chemistry.

[114]  Yvonne C. Martin,et al.  A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists , 1993, J. Comput. Aided Mol. Des..

[115]  R K Robins,et al.  Analysis of the in vitro antitumor activity of novel purine-6-sulfenamide, -sulfinamide, and -sulfonamide nucleosides and certain related compounds using a computer-aided receptor modeling procedure. , 1991, Journal of medicinal chemistry.

[116]  K F Koehler,et al.  Predictive binding of beta-carboline inverse agonists and antagonists via the CoMFA/GOLPE approach. , 1992, Journal of medicinal chemistry.

[117]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[118]  Jerry A. Darsey,et al.  Opening up the black box of artificial neural networks , 1994 .

[119]  A. N. Jain,et al.  Quantitative binding site model generation: compass applied to multiple chemotypes targeting the 5-HT1A receptor. , 1995, Journal of medicinal chemistry.

[120]  Peter A. Kollman,et al.  Molecular mechanics simulation of protein-ligand interactions: binding of thyroid hormone analogs to prealbumin , 1982 .

[121]  Igor V. Tetko,et al.  Neural network studies, 1. Comparison of overfitting and overtraining , 1995, J. Chem. Inf. Comput. Sci..

[122]  J. Zupan,et al.  Neural Networks in Chemistry , 1993 .

[123]  G M Crippen,et al.  Quantitative structure-activity relationship by distance geometry: quinazolines as dihydrofolate reductase inhibitors. , 1982, Journal of medicinal chemistry.

[124]  Ki Hwan Kim,et al.  Nonlinear dependence in comparative molecular field analysis , 1993, J. Comput. Aided Mol. Des..

[125]  Anton J. Hopfinger,et al.  Molecular shape analysis and energetics-based intermolecular modelling of benzylpyrimidine dihydrofolate reductase inhibitors , 1985 .

[126]  C. Bearer,et al.  How are children different from adults? , 1995, Environmental health perspectives.

[127]  G M Crippen,et al.  Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure. , 1989, Journal of medicinal chemistry.

[128]  W G Richards,et al.  Molecular similarity, quantitative chirality, and QSAR for chiral drugs. , 1994, Journal of medicinal chemistry.

[129]  H. Kubinyi QSAR: Hansch Analysis and Related Approaches: Kubinyi/QSAR , 1993 .

[130]  I T Weber,et al.  Molecular mechanics calculations on HIV-1 protease with peptide substrates correlate with experimental data. , 1996, Protein engineering.

[131]  W. Graham Richards,et al.  Similarity of molecular shape , 1991, J. Comput. Aided Mol. Des..

[132]  M. Hahn Receptor surface models. 1. Definition and construction. , 1995, Journal of medicinal chemistry.

[133]  Description of hydrophobicity parameters of a mixed set from their three-dimensional structures. , 1995, Bioorganic & medicinal chemistry.

[134]  A QSAR Study of the Ames Mutagenicity of 1‐(X‐Phenyl)‐3,3‐dialkyltriazenes Using Molecular Potential Energy Fields and Molecular Shape Analysis , 1984 .

[135]  C. Wermuth,et al.  Trends in QSAR and Molecular Modelling 92 , 1993 .

[136]  Corwin Hansch,et al.  Comprehensive medicinal chemistry : the rational design, mechanistic study & therapeutic application of chemical compounds , 1990 .

[137]  Ettore Novellino,et al.  COMBINED USE OF FACTORIAL DESIGN AND COMPARATIVE MOLECULAR FIELD ANALYSIS (COMFA) : A CASE STUDY , 1994 .

[138]  R S Bohacek,et al.  Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design. , 1992, Journal of medicinal chemistry.

[139]  A J Hopfinger,et al.  Ames test and antitumor activity of 1-(X-phenyl)-3,3-dialkyltriazenes. Quantitative structure-activity studies based upon molecular shape analysis. , 1982, Molecular pharmacology.

[140]  H. Höltje,et al.  Qualitative and quantitative structure-activity relationships for calcium channel modulating 1,4-dihydropyridine derivatives: a hypothetical molecular receptor model , 1988 .

[141]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[142]  Ettore Novellino,et al.  Study of Benzodiazepines Receptor Sites Using a Combined QSAR‐CoMFA Approach , 1992 .

[143]  A M Davis,et al.  The use of the GRID program in the 3-D QSAR analysis of a series of calcium-channel agonists. , 1994, Journal of medicinal chemistry.

[144]  Yvonne C. Martin,et al.  DIRECT PREDICTION OF LINEAR FREE ENERGY SUBSTITUENT EFFECTS FROM 3D STRUCTURES USING COMPARATIVE MOLECULAR FIELD ANALYSIS. I, ELECTRONIC EFFECTS OF SU BSTITUTED BENZOIC ACIDS , 1991 .

[145]  D. Walters,et al.  Genetically evolved receptor models: a computational approach to construction of receptor models. , 1994, Journal of medicinal chemistry.

[146]  M. Koehler,et al.  A molecular shape analysis and quantitative structure-activity relationship investigation of some triazine-antifolate inhibitors of Leishmania dihydrofolate reductase. , 1988, Archives of Biochemistry and Biophysics.

[147]  Hans-Joachim Böhm,et al.  LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads , 1992, J. Comput. Aided Mol. Des..

[148]  G. Cruciani,et al.  Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D‐QSAR Problems , 1993 .

[149]  G Klebe,et al.  On the prediction of binding properties of drug molecules by comparative molecular field analysis. , 1993, Journal of medicinal chemistry.

[150]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[151]  A. Höskuldsson PLS regression methods , 1988 .

[152]  Ki Hwan Kim,et al.  Use of the hydrogen bond potential function in a comparative molecular field analysis (CoMFA) on a set of benzodiazepines , 1993, J. Comput. Aided Mol. Des..

[153]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[154]  Bernard Testa,et al.  Lipophilicity in Molecular Modeling , 1996, Pharmaceutical Research.

[155]  Romualdo Benigni,et al.  Analysis of Distance Matrices for Studying Data Structures and Separating, Classes , 1993 .

[156]  G Greco,et al.  Effects of variable selection on CoMFA coefficient contour maps in a set of triazines inhibiting DHFR , 1994, J. Comput. Aided Mol. Des..

[157]  James H. Wikel,et al.  The use of neural networks for variable selection in QSAR , 1993 .

[158]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[159]  Yvonne C. Martin,et al.  Use of molecular fields to compare series of potentially bioactive molecules designed by scientists or by computer , 1990 .

[160]  A J Hopfinger,et al.  Three-dimensional molecular shape analysis-quantitative structure-activity relationship of a series of cholecystokinin-A receptor antagonists. , 1994, Journal of medicinal chemistry.

[161]  Manfred Morari,et al.  PLS/neural networks , 1992 .

[162]  Y. Martin,et al.  Mathematical considerations in series design. , 1979, Journal of medicinal chemistry.

[163]  Ulf Norinder,et al.  Single and domain mode variable selection in 3D QSAR applications , 1996 .

[164]  Tudor I. Oprea,et al.  Multiconformational Minimal Steric Difference. Structure‐Acetylcholinesterase Hydrolysis Rates Relations for Acetic Acid Esters , 1993 .

[165]  Mario G. Cardozo,et al.  Conformational analyses and molecular-shape comparisons of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase , 1992 .

[166]  G. Cruciani,et al.  Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b. , 1994, Journal of medicinal chemistry.

[167]  Irina Massova,et al.  Comparative molecular field analysis of the antitumor activity of 9H-thioxanthen-9-one derivatives against pancreatic ductal carcinoma 03. , 1994, Journal of medicinal chemistry.

[168]  Glen Eugene Kellogg,et al.  The effect of physical organic properties on hydrophobic fields , 1994, J. Comput. Aided Mol. Des..

[169]  Voronoi binding site models , 1987, NIDA research monograph.

[170]  Yuichi Kato,et al.  A novel method for superimposing molecules and receptor mapping , 1987 .

[171]  A. Doweyko,et al.  The hypothetical active site lattice. An approach to modelling active sites from data on inhibitor molecules. , 1988, Journal of medicinal chemistry.

[172]  R. Ornstein,et al.  Binding free energy calculations for P450cam-substrate complexes. , 1996, Protein engineering.

[173]  Ki Hwan Kim 3D‐Quantitative Structure‐Activity Relationships: Describing Hydrophobic Interactions Directly from 3D Structures Using a Comparative Molecular Field Analysis (CoMFA) Approach , 1993 .

[174]  G M Crippen,et al.  Distance geometry analysis of the benzodiazepine binding site. , 1982, Molecular pharmacology.

[175]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[176]  A Tropsha,et al.  Cross-validated R2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results. , 1995, Journal of medicinal chemistry.

[177]  G. Klebe,et al.  Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. , 1994, Journal of medicinal chemistry.

[178]  George W. A. Milne,et al.  Comparative Molecular Field Analysis of Hydrophobicity Descriptors of Cytosine Nucleosides , 1995 .

[179]  G M Crippen,et al.  Voronoi binding site model of a polycyclic aromatic hydrocarbon binding protein. , 1990, Journal of medicinal chemistry.

[180]  Gordon M. Crippen,et al.  A novel approach to calculation of conformation: Distance geometry , 1977 .

[181]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[182]  Alan J. Harget,et al.  Computer-Aided Drug Design: A Neural Network Approach , 1992, IFIP Congress.

[183]  R. Sheridan,et al.  The ensemble approach to distance geometry: application to the nicotinic pharmacophore. , 1986, Journal of medicinal chemistry.