Fast PCA for processing calcium-imaging data from the brain of drosophila melanogaster

The calcium-imaging technique allows us to record movies of brain activity in the antennal lobe of the fruitfly Drosophila melanogaster, a brain compartment where information about odors is processed. For signal processing that scales up with the growing data sizes in imaging, we have developed an approximate Principal Component Analysis (PCA) for fast dimensionality reduction. The approach relies on selecting a set of relevant pixels from the movies based on a priori knowledge about the nature of the data, ensuring a high-quality approximation. Once in PCA space, we can efficiently perform source separation, e.g to detect biological signals in the movies and to remove artifacts.

[1]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[2]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[3]  Ian T. Jolliffe,et al.  Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .

[4]  I. Jolliffe Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .

[5]  Shin-ichi Sasaki,et al.  Comments on the NIPALS algorithm , 1990 .

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[8]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[9]  L. Vosshall Olfaction in Drosophila , 2000, Current Opinion in Neurobiology.

[10]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[11]  Luis Mateus Rocha,et al.  Singular value decomposition and principal component analysis , 2003 .

[12]  Kezhi Mao,et al.  Identifying critical variables of principal components for unsupervised feature selection , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Fabian J. Theis,et al.  Functional MRI Analysis by a Novel Spatiotemporal ICA Algorithm , 2005, ICANN.

[14]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[15]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..

[16]  Amiram Grinvald,et al.  Independent component analysis of high-resolution imaging data identifies distinct functional domains , 2007, NeuroImage.

[17]  Yun Li,et al.  Feature Selection for Identifying Critical Variables of Principal Components Based on K-Nearest Neighbor Rule , 2007, VISUAL.

[18]  Christos Boutsidis,et al.  Unsupervised feature selection for principal components analysis , 2008, KDD.

[19]  Martin Strauch,et al.  Registration to a Neuroanatomical Reference Atlas - Identifying Glomeruli in Optical Recordings of the Honeybee Brain , 2008, German Conference on Bioinformatics.

[20]  C Giovanni Galizia,et al.  Olfactory Information Processing in the Drosophila Antennal Lobe: Anything Goes? , 2008, The Journal of Neuroscience.

[21]  B. Smith,et al.  Associative Conditioning Tunes Transient Dynamics of Early Olfactory Processing , 2009, The Journal of Neuroscience.

[22]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[23]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[24]  James G. Nagy,et al.  Parallel Colt , 2010 .

[25]  Martin Strauch,et al.  Integrating Heterogeneous Odor Response Data into a Common Response Model: A DoOR to the Complete Olfactome , 2010, Chemical senses.

[26]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[27]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.