On varieties of meet automata
暂无分享,去创建一个
[1] Grzegorz Rozenberg,et al. Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.
[2] Libor Polák. Syntactic Semiring and Universal Automaton , 2003, Developments in Language Theory.
[3] Libor Polák. On Pseudovarieties of Semiring Homomorphisms , 2004, MFCS.
[4] Andris Ambainis,et al. 1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[5] Michal Kunc. Equational description of pseudovarieties of homomorphisms , 2003, RAIRO Theor. Informatics Appl..
[6] Jacques Sakarovitch,et al. Star Height of Reversible Languages and Universal Automata , 2002, LATIN.
[7] Zoltán Ésik,et al. Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..
[8] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[9] Dana Angluin,et al. Inference of Reversible Languages , 1982, JACM.
[10] Libor Polák,et al. Splitting conditions for classes of meet automata , 2007 .
[11] Howard Straubing,et al. On Logical Descriptions of Regular Languages , 2002, LATIN.
[12] L. Polák. A classification of rational languages by semilattice-orderedmonoids , 2004 .
[13] Jean-Éric Pin,et al. Varieties Generated by Certain Models of Reversible Finite Automata , 2010, Chic. J. Theor. Comput. Sci..
[14] Howard Straubing,et al. Actions, wreath products of C-varieties and concatenation product , 2006, Theor. Comput. Sci..
[15] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[16] Kim G. Larsen,et al. Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..
[17] Libor Polák. Syntactic semiring and language equations , 2002, CIAA'02.
[18] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .