On varieties of meet automata

Eilenberg's variety theorem gives a bijective correspondence between varieties of languages and varieties of finite monoids. The second author gave a similar relation between conjunctive varieties of languages and varieties of semiring homomorphisms. In this paper, we add a third component to this result by considering varieties of meet automata. We consider three significant classes of languages, two of them consisting of reversible languages. We present conditions on meet automata and identities for semiring homomorphisms for their characterization.

[1]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[2]  Libor Polák Syntactic Semiring and Universal Automaton , 2003, Developments in Language Theory.

[3]  Libor Polák On Pseudovarieties of Semiring Homomorphisms , 2004, MFCS.

[4]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[5]  Michal Kunc Equational description of pseudovarieties of homomorphisms , 2003, RAIRO Theor. Informatics Appl..

[6]  Jacques Sakarovitch,et al.  Star Height of Reversible Languages and Universal Automata , 2002, LATIN.

[7]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[8]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[9]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[10]  Libor Polák,et al.  Splitting conditions for classes of meet automata , 2007 .

[11]  Howard Straubing,et al.  On Logical Descriptions of Regular Languages , 2002, LATIN.

[12]  L. Polák A classification of rational languages by semilattice-orderedmonoids , 2004 .

[13]  Jean-Éric Pin,et al.  Varieties Generated by Certain Models of Reversible Finite Automata , 2010, Chic. J. Theor. Comput. Sci..

[14]  Howard Straubing,et al.  Actions, wreath products of C-varieties and concatenation product , 2006, Theor. Comput. Sci..

[15]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[16]  Kim G. Larsen,et al.  Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..

[17]  Libor Polák Syntactic semiring and language equations , 2002, CIAA'02.

[18]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .