AutoGuard: A Dual Intelligence Proactive Anomaly Detection at Application-Layer in 5G Networks

[1]  Makan Pourzandi,et al.  NFV security survey in 5G networks: A three-dimensional threat taxonomy , 2021, Comput. Networks.

[2]  Qinghe Du,et al.  Deep Learning-Based DDoS-Attack Detection for Cyber–Physical System Over 5G Network , 2021, IEEE Transactions on Industrial Informatics.

[3]  Brian Kenji Iwana,et al.  An empirical survey of data augmentation for time series classification with neural networks , 2020, PloS one.

[4]  Xiaomin Song,et al.  Time Series Data Augmentation for Deep Learning: A Survey , 2020, IJCAI.

[5]  Aniekan Essien,et al.  A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders , 2020, IEEE Transactions on Industrial Informatics.

[6]  RePAD: Real-time Proactive Anomaly Detection for Time Series , 2020, AINA.

[7]  Mohamed Nadif,et al.  Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-EDAE) , 2019, Pattern Recognit..

[8]  Christian S. Jensen,et al.  Outlier Detection for Time Series with Recurrent Autoencoder Ensembles , 2019, IJCAI.

[9]  Andrei Gurtov,et al.  Security for 5G and Beyond , 2019, IEEE Communications Surveys & Tutorials.

[10]  Songwu Lu,et al.  vEPC-sec: Securing LTE Network Functions Virtualization on Public Cloud , 2019, IEEE Transactions on Information Forensics and Security.

[11]  Shahzad Muzaffar,et al.  Short-Term Load Forecasts Using LSTM Networks , 2019, Energy Procedia.

[12]  Elisa Bertino,et al.  LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE , 2018, NDSS.

[13]  Sébastien Canard,et al.  BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection System over Encrypted Traffic , 2017, AsiaCCS.

[14]  Peter C. Y. Chen,et al.  LSTM network: a deep learning approach for short-term traffic forecast , 2017 .

[15]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[16]  Ugur Demiryurek,et al.  Deep Learning: A Generic Approach for Extreme Condition Traffic Forecasting , 2017, SDM.

[17]  M. Hadi Amini,et al.  ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation , 2016 .

[18]  Georges Kaddoum,et al.  Survey on Threats and Attacks on Mobile Networks , 2016, IEEE Access.

[19]  Edgar R. Weippl,et al.  IMSI-catch me if you can: IMSI-catcher-catchers , 2014, ACSAC.

[20]  Hongyuan Wang,et al.  Real-time detection of application-layer DDoS attack using time series analysis , 2013 .

[21]  D. T. Lee,et al.  Travel-time prediction with support vector regression , 2004, IEEE Transactions on Intelligent Transportation Systems.