Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies–Fagus forests in the Świętokrzyski National Park (Poland)
暂无分享,去创建一个
[1] Julian Evans. The forests handbook , 2016 .
[2] Timo Pukkala,et al. Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain) , 2007, European Journal of Forest Research.
[3] R. Podlaski. Suitability of the selected statistical distributions for fitting diameter data in distinguished development stages and phases of near-natural mixed forests in the Świętokrzyski National Park (Poland) , 2006 .
[4] L. Zhang,et al. Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models , 2006, Journal of Forest Research.
[5] J. Merganic,et al. Characterisation of diameter distribution using the Weibull function: method of moments , 2006, European Journal of Forest Research.
[6] M. Zasada,et al. A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland , 2005 .
[7] L. Zhang,et al. A comparison of estimation methods for fitting Weibull and Johnson's SB distributions to mixed sprucefir stands in northeastern North America , 2003 .
[8] J. Gove,et al. A Finite Mixture Model for Characterizing the Diameter Distributions of Mixed-Species Forest Stands , 2002, Forest Science.
[9] Eric W. Weisstein,et al. Quantile-Quantile Plot , 2002 .
[10] J. Gove,et al. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands , 2001 .
[11] Annika Kangas,et al. Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution , 1998 .
[12] Hans Pretzsch,et al. Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony , 1997 .
[13] H. Pretzsch. Perspektiven einer modellorientierten Waldwachstumsforschung , 1995, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.
[14] B. Borders,et al. Projecting Stand Tables: A Comparison of the Weibull Diameter Distribution Method, a Percentile-Based Projection Method, and a Basal Area Growth Projection Method , 1990, Forest Science.
[15] Thomas E. Burk,et al. Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.
[16] R. Bailey,et al. Percentile-Based Distributions Characterize Forest Stand Tables , 1987, Forest Science.
[17] R. D'Agostino,et al. Goodness-of-Fit-Techniques , 1987 .
[18] M. Rudy. Zespoły leśne Polski , 2006 .
[19] J. Köstler. Allgäuer Plenterwaldtypen , 2005, Forstwissenschaftliches Centralblatt.
[20] J. Karczmarski. Struktura rozkladow piersnic w naturalnych gornoleglowych borach swierkowych Tatr i Beskidow Zachodnich w zaleznosci od stadiow i faz rozwojowych lasu o charakterze pierwotnym , 2005 .
[21] D. Leduc,et al. A Model Describing Growth and Development of Longleaf Pine Plantations: Consequences of Observed Stand Structures of Structure of the Model , 2002 .
[22] W. Zucchini,et al. A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models , 2001 .
[23] M. Dudzińska,et al. Rozklad piersnic drzew w nizinnych drzewostanach bukowych , 2001 .
[24] M. Zasada. Ocena zgodnosci rozkladow piersnic drzew drzewostanow brzozowych z niektorymi rozkladami teoretycznymi , 2000 .
[25] A. Jaworski,et al. Bukowe lasy o charakterze pierwotnym jako model lasow przerebowych , 2000 .
[26] M. Zasada. A comparison of dbh distribution in birch stands with selected theoretical distributions. , 2000 .
[27] M. Dudzińska,et al. Analiza rozkladu piersnic w drzewostanach bukowych , 1999 .
[28] A. Jaworski,et al. Budowa i struktura drzewostanow o charakterze pierwotnym w rezerwacie Swiety Krzyz [Swietokrzyski Park Narodowy] , 1999 .
[29] Jouni Siipilehto,et al. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .
[30] Silva Fennica. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem , 1999 .
[31] H. Pretzsch. Structural diversity as a result of silvicultural operations , 1998 .
[32] O. Spaargaren,et al. World Reference Base for Soil Resources , 1998 .
[33] Matti Maltamo,et al. Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. , 1997 .
[34] R. Poznański. Typy rozkladu piersnic a stadia rozwojowe lasow o zroznicowanej strukturze , 1997 .
[35] A. Jaworski. Karpackie lasy o charakterze pierwotnym i ich znaczenie w ksztaltowaniu proekologicznego modelu gospodarki lesnej w gorach , 1997 .
[36] L. Mejnartowicz. Rozmnazanie generatywne daglezji zielonej [Pseudotsuga menziesii [Mirb.]Franco] , 1997 .
[37] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[38] M. Zasada. Ocena zgodnosci rozkladow piersnic w drzewostanach jodlowych z niektorymi rozkladami teoretycznymi , 1995 .
[39] S. Korpel,et al. Die Urwälder der Westkarpaten , 1995 .
[40] M. Maltamo,et al. Comparison of beta and weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies , 1995 .
[41] K. Siekierski. Three methods of estimation of parameters in the double normal distribution and their applicability to modelling tree diameter distributions , 1991 .
[42] O. Dittmar. Studies in the beech selection forest at Keula. , 1990 .
[43] H. Zybura,et al. Tempo wzrostu wysokości buka w dolnym piętrze drzewostanów sosnowych , 1989 .
[44] R. Kapuściński. Świętokrzyski Park Narodowy , 1988 .
[45] T. R. Dell,et al. An evaluation of percentile and maximum likelihood estimators of weibull paremeters , 1985 .
[46] Fourth Edition,et al. Simulation Modeling and Analysis , 1982 .