Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies–Fagus forests in the Świętokrzyski National Park (Poland)

[1]  Julian Evans The forests handbook , 2016 .

[2]  Timo Pukkala,et al.  Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain) , 2007, European Journal of Forest Research.

[3]  R. Podlaski Suitability of the selected statistical distributions for fitting diameter data in distinguished development stages and phases of near-natural mixed forests in the Świętokrzyski National Park (Poland) , 2006 .

[4]  L. Zhang,et al.  Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models , 2006, Journal of Forest Research.

[5]  J. Merganic,et al.  Characterisation of diameter distribution using the Weibull function: method of moments , 2006, European Journal of Forest Research.

[6]  M. Zasada,et al.  A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland , 2005 .

[7]  L. Zhang,et al.  A comparison of estimation methods for fitting Weibull and Johnson's SB distributions to mixed sprucefir stands in northeastern North America , 2003 .

[8]  J. Gove,et al.  A Finite Mixture Model for Characterizing the Diameter Distributions of Mixed-Species Forest Stands , 2002, Forest Science.

[9]  Eric W. Weisstein,et al.  Quantile-Quantile Plot , 2002 .

[10]  J. Gove,et al.  A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands , 2001 .

[11]  Annika Kangas,et al.  Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution , 1998 .

[12]  Hans Pretzsch,et al.  Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony , 1997 .

[13]  H. Pretzsch Perspektiven einer modellorientierten Waldwachstumsforschung , 1995, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[14]  B. Borders,et al.  Projecting Stand Tables: A Comparison of the Weibull Diameter Distribution Method, a Percentile-Based Projection Method, and a Basal Area Growth Projection Method , 1990, Forest Science.

[15]  Thomas E. Burk,et al.  Goodness-of-Fit Tests and Model Selection Procedures for Diameter Distribution Models , 1988, Forest Science.

[16]  R. Bailey,et al.  Percentile-Based Distributions Characterize Forest Stand Tables , 1987, Forest Science.

[17]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[18]  M. Rudy Zespoły leśne Polski , 2006 .

[19]  J. Köstler Allgäuer Plenterwaldtypen , 2005, Forstwissenschaftliches Centralblatt.

[20]  J. Karczmarski Struktura rozkladow piersnic w naturalnych gornoleglowych borach swierkowych Tatr i Beskidow Zachodnich w zaleznosci od stadiow i faz rozwojowych lasu o charakterze pierwotnym , 2005 .

[21]  D. Leduc,et al.  A Model Describing Growth and Development of Longleaf Pine Plantations: Consequences of Observed Stand Structures of Structure of the Model , 2002 .

[22]  W. Zucchini,et al.  A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models , 2001 .

[23]  M. Dudzińska,et al.  Rozklad piersnic drzew w nizinnych drzewostanach bukowych , 2001 .

[24]  M. Zasada Ocena zgodnosci rozkladow piersnic drzew drzewostanow brzozowych z niektorymi rozkladami teoretycznymi , 2000 .

[25]  A. Jaworski,et al.  Bukowe lasy o charakterze pierwotnym jako model lasow przerebowych , 2000 .

[26]  M. Zasada A comparison of dbh distribution in birch stands with selected theoretical distributions. , 2000 .

[27]  M. Dudzińska,et al.  Analiza rozkladu piersnic w drzewostanach bukowych , 1999 .

[28]  A. Jaworski,et al.  Budowa i struktura drzewostanow o charakterze pierwotnym w rezerwacie Swiety Krzyz [Swietokrzyski Park Narodowy] , 1999 .

[29]  Jouni Siipilehto,et al.  Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .

[30]  Silva Fennica Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem , 1999 .

[31]  H. Pretzsch Structural diversity as a result of silvicultural operations , 1998 .

[32]  O. Spaargaren,et al.  World Reference Base for Soil Resources , 1998 .

[33]  Matti Maltamo,et al.  Comparing basal area diameter distributions estimated by tree species and for the entire growing stock in a mixed stand. , 1997 .

[34]  R. Poznański Typy rozkladu piersnic a stadia rozwojowe lasow o zroznicowanej strukturze , 1997 .

[35]  A. Jaworski Karpackie lasy o charakterze pierwotnym i ich znaczenie w ksztaltowaniu proekologicznego modelu gospodarki lesnej w gorach , 1997 .

[36]  L. Mejnartowicz Rozmnazanie generatywne daglezji zielonej [Pseudotsuga menziesii [Mirb.]Franco] , 1997 .

[37]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[38]  M. Zasada Ocena zgodnosci rozkladow piersnic w drzewostanach jodlowych z niektorymi rozkladami teoretycznymi , 1995 .

[39]  S. Korpel,et al.  Die Urwälder der Westkarpaten , 1995 .

[40]  M. Maltamo,et al.  Comparison of beta and weibull functions for modelling basal area diameter distribution in stands of pinus sylvestris and picea abies , 1995 .

[41]  K. Siekierski Three methods of estimation of parameters in the double normal distribution and their applicability to modelling tree diameter distributions , 1991 .

[42]  O. Dittmar Studies in the beech selection forest at Keula. , 1990 .

[43]  H. Zybura,et al.  Tempo wzrostu wysokości buka w dolnym piętrze drzewostanów sosnowych , 1989 .

[44]  R. Kapuściński Świętokrzyski Park Narodowy , 1988 .

[45]  T. R. Dell,et al.  An evaluation of percentile and maximum likelihood estimators of weibull paremeters , 1985 .

[46]  Fourth Edition,et al.  Simulation Modeling and Analysis , 1982 .