An Efficient Approach to Correspondences between Multiple NonRigid Parts

Identifying multiple deformable parts on meshes and establishing dense correspondences between them are tasks of fundamental importance to computer graphics, with applications to e.g. geometric edit propagation and texture transfer. Much research has considered establishing correspondences between non-rigid surfaces, but little work can both identify similar multiple deformable parts and handle partial shape correspondences. This paper addresses two related problems, treating them as a whole: (i) identifying similar deformable parts on a mesh, related by a non-rigid transformation to a given query part, and (ii) establishing dense point correspondences automatically between such parts. We show that simple and efficient techniques can be developed if we make the assumption that these parts locally undergo isometric deformation. Our insight is that similar deformable parts are suggested by large clusters of point correspondences that are isometrically consistent. Once such parts are identified, dense point correspondences can be obtained by an iterative propagation process. Our techniques are applicable to models with arbitrary topology. Various examples demonstrate the effectiveness of our techniques.

[1]  Yücel Yemez,et al.  Partial 3‐D Correspondence from Shape Extremities , 2014, Comput. Graph. Forum.

[2]  Gary K. L. Tam,et al.  Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry , 2014, ACM Trans. Graph..

[3]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[4]  Stephen DiVerdi,et al.  Learning part-based templates from large collections of 3D shapes , 2013, ACM Trans. Graph..

[5]  Jonathan Pokrass,et al.  Partial Shape Matching Without Point-Wise Correspondence , 2013 .

[6]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[7]  Daniel Cohen-Or,et al.  Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering , 2011, ACM Trans. Graph..

[8]  Vladlen Koltun,et al.  Joint shape segmentation with linear programming , 2011, ACM Trans. Graph..

[9]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[10]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[11]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[12]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[13]  Niloy J. Mitra,et al.  Intrinsic Regularity Detection in 3D Geometry , 2010, ECCV.

[14]  Daniel Cohen-Or,et al.  Contextual Part Analogies in 3D Objects , 2010, International Journal of Computer Vision.

[15]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[16]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[17]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[18]  Hans-Peter Seidel,et al.  A probabilistic framework for partial intrinsic symmetries in geometric data , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  M. Ovsjanikov,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[20]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[21]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[22]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[23]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[25]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[26]  Hans-Peter Seidel,et al.  Generalized intrinsic symmetry detection , 2009 .

[27]  Alexander M. Bronstein,et al.  Partial Similarity of Shapes Using a Statistical Significance Measure , 2009, IPSJ Trans. Comput. Vis. Appl..

[28]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[29]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[30]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[31]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[32]  N. Mitra,et al.  Eurographics Symposium on Geometry Processing (2005) Robust Global Registration , 2022 .