Constraints on higher spin CFT2

[1]  L. Apolo Bounds on CFTs with $W_3$ algebras and AdS$_3$ higher spin theories , 2017, 1705.10402.

[2]  Ethan Dyer,et al.  Universal bounds on charged states in 2d CFT and 3d gravity , 2016, 1603.09745.

[3]  Eric Perlmutter Bounding the space of holographic CFTs with chaos , 2016, 1602.08272.

[4]  Vasyl Alba,et al.  Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions , 2015, 1510.02535.

[5]  Thomas Hartman,et al.  Entanglement scrambling in 2d conformal field theory , 2015, Journal of High Energy Physics.

[6]  Thomas Hartman,et al.  Causality constraints in conformal field theory , 2015, 1509.00014.

[7]  Joshua D. Qualls Universal Bounds on Operator Dimensions in General 2D Conformal Field Theories , 2015, 1508.00548.

[8]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[9]  Natalie M. Paquette,et al.  On the Elliptic Genera of Manifolds of Spin(7) Holonomy , 2014, 1412.2804.

[10]  G. Watts,et al.  Modular properties of characters of the W3 algebra , 2014, 1411.4039.

[11]  C. Keller,et al.  Universal spectrum of 2d conformal field theory in the large c limit , 2014, 1405.5137.

[12]  A. Shapere,et al.  Bounds on operator dimensions in 2D conformal field theories , 2013, 1312.0038.

[13]  R. Gopakumar,et al.  The spectrum of light states in large N minimal models , 2013, 1310.1744.

[14]  C. Keller,et al.  Constraints on 2d CFT partition functions , 2013, 1307.6562.

[15]  G. Watts,et al.  Characters of the W3 algebra , 2013, 1307.3771.

[16]  E. Skvortsov,et al.  On the uniqueness of higher-spin symmetries in AdS and CFT , 2013, 1305.5180.

[17]  J. Kaplan,et al.  The analytic bootstrap and AdS superhorizon locality , 2012, 1212.3616.

[18]  A. Zhiboedov,et al.  Convexity and liberation at large spin , 2012, 1212.4103.

[19]  Thomas Hartman,et al.  Higher spin black holes from CFT , 2012, 1203.0015.

[20]  S. Ribault,et al.  The large central charge limit of conformal blocks , 2011, 1109.6764.

[21]  S. Raju,et al.  Correlation functions in holographic minimal models , 2011, Nuclear Physics B.

[22]  X. Yin,et al.  Higher spin gravity with matter in AdS3 and its CFT dual , 2011, 1106.2580.

[23]  J. Maldacena,et al.  Constraining conformal field theories with a higher spin symmetry , 2011, 1112.1016.

[24]  Thomas Hartman,et al.  Symmetries of holographic minimal models , 2011, 1101.2910.

[25]  A. Maloney,et al.  Higher spin theories in AdS3 and a gravitational exclusion principle , 2010, 1012.0598.

[26]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[27]  S. Hellerman A universal inequality for CFT and quantum gravity , 2009, 0902.2790.

[28]  S. Pfenninger,et al.  Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.

[29]  R. Blumenhagen,et al.  Introduction to Conformal Field Theory: With Applications to String Theory , 2009 .

[30]  J. Boer,et al.  The Topological G 2 String , 2008 .

[31]  D. Gepner,et al.  Unitary representations of SW(3/2,2) superconformal algebra , 2001, hep-th/0101116.

[32]  C. Schweigert,et al.  Systematic Approach to Cyclic Orbifolds , 1997, hep-th/9701061.

[33]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[34]  K. Vos,et al.  The Kazhdan–Lusztig conjecture for W algebras , 1995, hep-th/9508020.

[35]  Steffen Mallwitz ON SW MINIMAL MODELS AND N = 1 SUPERSYMMETRIC QUANTUM TODA FIELD THEORIES , 1994, hep-th/9405025.

[36]  A. Honecker,et al.  Coset Realization of Unifying { w} Algebras , 1994, hep-th/9406203.

[37]  Chuan-Jie Zhu The complete structure of the nonlinear W4 and W5 algebras from the quantum Miura transformation , 1993, hep-th/9306025.

[38]  K. Hornfeck W-algebras with set of primary fields of dimensions (3, 4, 5) and (3, 4, 5, 6) , 1992, hep-th/9212104.

[39]  K. Schoutens,et al.  W symmetry in conformal field theory , 1992, hep-th/9210010.

[40]  Kris Thielemans,et al.  A Mathematica package for computing operator product expansions , 1991 .

[41]  R. Blumenhagen,et al.  W-algebras with two and three generators , 1991 .

[42]  G. Watts,et al.  A Study of W algebras using Jacobi identities , 1991 .

[43]  A. Bilal Introduction to W algebras , 1991 .

[44]  S. Odake c=3d CONFORMAL ALGEBRA WITH EXTENDED SUPERSYMMETRY , 1990 .

[45]  S. Odake CHARACTER FORMULAS OF AN EXTENDED SUPERCONFORMAL ALGEBRA RELEVANT TO STRING COMPACTIFICATION , 1990 .

[46]  G. Watts Determinant formulae for extended algebras in two-dimensional conformal field theory , 1989 .

[47]  S. Mizoguchi Non-unitarity theorem for the a type Wn algebra , 1989 .

[48]  S. Mizoguchi Determinant formula and unitarity for the W3 algebra , 1989 .

[49]  S. Odake EXTENSION OF N = 2 SUPERCONFORMAL ALGEBRA AND CALABI-YAU COMPACTIFICATION , 1989 .

[50]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[51]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[52]  A. Achúcarro,et al.  A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories , 1986 .

[53]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[54]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[55]  R. Gatto,et al.  Properties of partial-wave amplitudes in conformal invariant field theories , 1975 .