Protein phosphorylation and its role in archaeal signal transduction

Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

[1]  P. Lochhead Protein Kinase Activation Loop Autophosphorylation in Cis: Overcoming a Catch-22 Situation , 2009, Science Signaling.

[2]  Jonathan Dworkin,et al.  Eukaryote-Like Serine/Threonine Kinases and Phosphatases in Bacteria , 2011, Microbiology and Molecular Reviews.

[3]  P. Kennelly Protein Ser/Thr/Tyr Phosphorylation in the Archaea* , 2014, Journal of Biological Chemistry.

[4]  M. Aebi,et al.  Mechanisms and principles of N-linked protein glycosylation. , 2011, Current opinion in structural biology.

[5]  Kürşad Turgay,et al.  Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis , 2012, Proceedings of the National Academy of Sciences.

[6]  Yigong Shi Serine/Threonine Phosphatases: Mechanism through Structure , 2009, Cell.

[7]  G. Shaulsky,et al.  Histidine kinases in signal transduction pathways of eukaryotes. , 1997, Journal of cell science.

[8]  J. Maupin-Furlow Ubiquitin-like proteins and their roles in archaea. , 2013, Trends in microbiology.

[9]  P. Cohen Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. , 1991, Methods in enzymology.

[10]  F. Ausubel,et al.  Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Sylvie Garneau-Tsodikova,et al.  Protein posttranslational modifications: the chemistry of proteome diversifications. , 2005, Angewandte Chemie.

[12]  D. Figeys,et al.  The functional diversity of protein lysine methylation , 2014, Molecular systems biology.

[13]  G. Vogels,et al.  Purification and Properties of an Enzyme Involved in the ATP-dependent Activation of the Methanol:2-Mercaptoethanesulfonic Acid Methyltransferase Reaction in Methanosarcina barkeri* , 1996, The Journal of Biological Chemistry.

[14]  Stuart J Cordwell,et al.  Beyond gene expression: the impact of protein post-translational modifications in bacteria. , 2014, Journal of proteomics.

[15]  H. Reeves,et al.  Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. , 1979, Science.

[16]  A. Roidl,et al.  Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression , 2002, Molecular microbiology.

[17]  Milena D. Bister,et al.  Rio2p, an Evolutionarily Conserved, Low Abundant Protein Kinase Essential for Processing of 20 S Pre-rRNA in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[18]  M. Adams,et al.  Posttranslational Protein Modification in Archaea , 2005, Microbiology and Molecular Biology Reviews.

[19]  J. Maupin-Furlow Proteasomes and protein conjugation across domains of life , 2011, Nature Reviews Microbiology.

[20]  ScienceDirect FEMS microbiology reviews , 1993 .

[21]  F. Striebel,et al.  Pupylation as a signal for proteasomal degradation in bacteria. , 2014, Biochimica et biophysica acta.

[22]  S. Fujiwara,et al.  Tk-PTP, protein tyrosine/serine phosphatase from hyperthermophilic archaeon Thermococcus kodakaraensis KOD1: enzymatic characteristics and identification of its substrate proteins. , 2002, Biochemical and biophysical research communications.

[23]  G. Carignani,et al.  Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr‐specific protein kinase , 1997, FEBS letters.

[24]  A. H. Wang,et al.  Enzyme–substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP‐fold phosphatase and its phosphopeptide complexes , 2006, Proteins.

[25]  M. Rossi,et al.  Biochemical characterization of two Cdc6/ORC1-like proteins from the crenarchaeon Sulfolobus solfataricus , 2006, Extremophiles.

[26]  R. Helm,et al.  Phosphoprotein with Phosphoglycerate Mutase Activity from the Archaeon Sulfolobus solfataricus , 2003, Journal of bacteriology.

[27]  R. Reinhardt,et al.  A novel aminopeptidase associated with the 60 kDa chaperonin in the thermophilic archaeon Sulfolobus solfataricus , 1998, Molecular microbiology.

[28]  P. Kennelly,et al.  A protein-serine phosphatase from the halophilic archaeon Haloferax volcanii. , 1993, Biochemical and biophysical research communications.

[29]  L. Wu,et al.  Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation. , 1996, Biochemistry.

[30]  P. Forterre,et al.  Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex , 2008, The EMBO journal.

[31]  Anne Dell,et al.  Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes , 2011, International journal of microbiology.

[32]  A. Ulijasz,et al.  Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens , 2014, Virulence.

[33]  P. Wright,et al.  Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. , 2012, Journal of proteome research.

[34]  Florian Gnad,et al.  Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life , 2009, PloS one.

[35]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[36]  G. Ordal,et al.  Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli , 1991, Journal of bacteriology.

[37]  U. Sauer,et al.  Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways , 2014, Science Signaling.

[38]  Jack E. Dixon,et al.  Crystal Structure of the Dual Specificity Protein Phosphatase VHR , 1996, Science.

[39]  P. Kennelly,et al.  Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon , 1995, Journal of bacteriology.

[40]  J. Soppa Protein Acetylation in Archaea, Bacteria, and Eukaryotes , 2010, Archaea.

[41]  Sun Bok Lee,et al.  Identification and characterization ofThermoplasma acidophilum 2-keto-3-deoxy-D-gluconate kinase: A new class of sugar kinases , 2005 .

[42]  Ivan Mijakovic,et al.  Impact of phosphoproteomics on studies of bacterial physiology. , 2012, FEMS microbiology reviews.

[43]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[44]  A. Wlodawer,et al.  Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. , 2004, Structure.

[45]  K. Jarrell,et al.  The archaellum: an old motility structure with a new name. , 2012, Trends in microbiology.

[46]  S. Shenolikar,et al.  From promiscuity to precision: protein phosphatases get a makeover. , 2009, Molecular cell.

[47]  M. Simon,et al.  Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima , 1996, Journal of bacteriology.

[48]  Ivan Mijakovic,et al.  Bacterial tyrosine kinases: evolution, biological function and structural insights , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  S. Bell,et al.  Transcription in Archaea. , 1998, Cold Spring Harbor symposia on quantitative biology.

[50]  G. Braus,et al.  One Juliet and four Romeos: VeA and its methyltransferases , 2015, Front. Microbiol..

[51]  P. Kennelly,et al.  Identification of a serine/threonine-specific protein phosphatase from the archaebacterium Sulfolobus solfataricus. , 1993, The Journal of biological chemistry.

[52]  P. Kennelly,et al.  A Phosphoprotein from the Archaeon Sulfolobus solfataricus with Protein-Serine/Threonine Kinase Activity , 2004, Journal of bacteriology.

[53]  Daniel Durocher,et al.  The FHA domain , 2002, FEBS letters.

[54]  S. Bell,et al.  Basal and regulated transcription in Archaea. , 2001, Biochemical Society transactions.

[55]  Michael Y. Galperin,et al.  Diversity of structure and function of response regulator output domains. , 2010, Current opinion in microbiology.

[56]  A. Cozzone,et al.  Analysis of the protein-kinase activity of Escherichia coli cells. , 1979, Biochemical and biophysical research communications.

[57]  R. Skórko,et al.  Polyphosphate as a source of phosphoryl group in protein modification in the archaebacterium Sulfolobus acidocaldarius. , 1989, Biochimie.

[58]  Mark T Bedford,et al.  Arginine methylation an emerging regulator of protein function. , 2005, Molecular cell.

[59]  D. Barford Molecular mechanisms of the protein serine/threonine phosphatases. , 1996, Trends in biochemical sciences.

[60]  M. Helm,et al.  Urmylation and tRNA thiolation functions of ubiquitin‐like Uba4·Urm1 systems are conserved from yeast to man , 2015, FEBS letters.

[61]  S. Hanks,et al.  Genomic analysis of the eukaryotic protein kinase superfamily: a perspective , 2003, Genome Biology.

[62]  D. Barford,et al.  The structure of the cell cycle protein Cdc14 reveals a proline‐directed protein phosphatase , 2003, The EMBO journal.

[63]  A. Derouiche,et al.  Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators. , 2015, Microbiology.

[64]  F. Werner,et al.  Recent advances in the understanding of archaeal transcription. , 2011, Current opinion in microbiology.

[65]  K. Hofmann,et al.  Yeast homolog of a cancer‐testis antigen defines a new transcription complex , 2006, The EMBO journal.

[66]  P. Kennelly,et al.  Activation of SsoPK4, an Archaeal eIF2α Kinase Homolog, by Oxidized CoA , 2015, Proteomes.

[67]  R. Skórko Protein phosphorylation in the archaebacterium Sulfolobus acidocaldarius. , 1984, European journal of biochemistry.

[68]  P. Kennelly,et al.  The Membrane-Associated Protein-Serine/Threonine Kinase from Sulfolobus solfataricus Is a Glycoprotein , 2002, Journal of bacteriology.

[69]  J. Maupin-Furlow,et al.  Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii , 2010, Archaea.

[70]  Stefan Dipl.-Ing. Schuster,et al.  Phosphorylation in halobacterial signal transduction. , 1995, The EMBO journal.

[71]  B. Siebers,et al.  Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea , 2013, The ISME Journal.

[72]  Sun Bok Lee,et al.  Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. , 2005, The Biochemical journal.

[73]  J. Hardouin,et al.  Protein lysine acetylation in bacteria: Current state of the art , 2016, Proteomics.

[74]  E. Delong,et al.  Environmental diversity of bacteria and archaea. , 2001, Systematic biology.

[75]  Z. Kelman,et al.  Autophosphorylation of Archaeal Cdc6 Homologues Is Regulated by DNA , 2001, Journal of bacteriology.

[76]  J. Soppa Basal and regulated transcription in archaea. , 2001, Advances in applied microbiology.

[77]  Susan S. Taylor,et al.  Protein kinases: evolution of dynamic regulatory proteins. , 2011, Trends in biochemical sciences.

[78]  K. Jarrell,et al.  N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis , 2014, Microbiology and Molecular Reviews.

[79]  A. Wlodawer,et al.  A Family Portrait of the RIO Kinases* , 2005, Journal of Biological Chemistry.

[80]  M. Kimura,et al.  In vitro phosphorylation of initiation factor 2 alpha (aIF2 alpha) from hyperthermophilic archaeon Pyrococcus horikoshii OT3. , 2004, Journal of biochemistry.

[81]  M. Simon,et al.  Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. , 1994, Trends in genetics : TIG.

[82]  Xiuzhu Dong,et al.  The Genome Characteristics and Predicted Function of Methyl-Group Oxidation Pathway in the Obligate Aceticlastic Methanogens, Methanosaeta spp , 2012, PloS one.

[83]  U. Gophna,et al.  A Genetic Investigation of the KEOPS Complex in Halophilic Archaea , 2012, PloS one.

[84]  J. Maupin-Furlow Prokaryotic ubiquitin-like protein modification. , 2014, Annual review of microbiology.

[85]  E. Krebs,et al.  The phosphorylase b to a converting enzyme of rabbit skeletal muscle. , 1956, Biochimica et biophysica acta.

[86]  Jonathan Dworkin,et al.  Ser/Thr phosphorylation as a regulatory mechanism in bacteria. , 2015, Current opinion in microbiology.

[87]  K. Mechtler,et al.  McsB Is a Protein Arginine Kinase That Phosphorylates and Inhibits the Heat-Shock Regulator CtsR , 2009, Science.

[88]  J. Deutscher,et al.  The Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System: Regulation by Protein Phosphorylation and Phosphorylation-Dependent Protein-Protein Interactions , 2014, Microbiology and Molecular Reviews.

[89]  Lei Zhang,et al.  Archaeal Eukaryote-Like Serine/Threonine Protein Kinase Interacts with and Phosphorylates a Forkhead-Associated-Domain-Containing Protein , 2010, Journal of bacteriology.

[90]  S. Gribaldo,et al.  The two-domain tree of life is linked to a new root for the Archaea , 2015, Proceedings of the National Academy of Sciences.

[91]  Klaus Harter,et al.  Plant Two-Component Signaling Systems and the Role of Response Regulators1 , 2002, Plant Physiology.

[92]  I. Mijakovic,et al.  Exploring the diversity of protein modifications: special bacterial phosphorylation systems. , 2016, FEMS microbiology reviews.

[93]  E. Petfalski,et al.  The path from nucleolar 90S to cytoplasmic 40S pre‐ribosomes , 2003, The EMBO journal.

[94]  Igor B Zhulin,et al.  Evolution and phyletic distribution of two-component signal transduction systems. , 2010, Current opinion in microbiology.

[95]  P. Kennelly,et al.  Inhibition of an archaeal protein phosphatase activity by okadaic acid, microcystin‐LR, or calyculin A , 1993, FEBS letters.

[96]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[97]  W. Stoeckenius,et al.  Light-regulated retinal-dependent reversible phosphorylation of Halobacterium proteins. , 1980, The Journal of biological chemistry.

[98]  P. Kennelly,et al.  Open Reading Frame sso2387 from the Archaeon Sulfolobus solfataricus Encodes a Polypeptide with Protein-Serine Kinase Activity , 2003, Journal of bacteriology.

[99]  Michael Y. Galperin Structural Classification of Bacterial Response Regulators: Diversity of Output Domains and Domain Combinations , 2006, Journal of bacteriology.

[100]  J. Rudolph,et al.  Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. , 1995, The EMBO journal.

[101]  A. Wlodawer,et al.  Structure and activity of the atypical serine kinase Rio1 , 2005, The FEBS journal.

[102]  P. Cohen,et al.  Novel protein serine/threonine phosphatases: variety is the spice of life. , 1997, Trends in biochemical sciences.

[103]  J. Dixon,et al.  Dissecting the catalytic mechanism of protein-tyrosine phosphatases. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  E. Delong,et al.  Everything in moderation: archaea as 'non-extremophiles'. , 1998, Current opinion in genetics & development.

[105]  Gary A. Winans,et al.  I. BIOCHEMICAL EVIDENCE , 1980 .

[106]  P. Kennelly,et al.  The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. , 2011, Archives of biochemistry and biophysics.

[107]  J. Dixon,et al.  Form and Function in Protein Dephosphorylation , 1996, Cell.

[108]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[109]  J. Maupin-Furlow Archaeal proteasomes and sampylation. , 2013, Sub-cellular biochemistry.

[110]  E. Koonin,et al.  Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. , 1998, Genome research.

[111]  P. Kennelly Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. , 2003, The Biochemical journal.

[112]  P. Forterre,et al.  The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. , 2009, Biochemical Society transactions.

[113]  K. Takeda,et al.  Atypical Protein Phosphatases: Emerging Players in Cellular Signaling , 2013, International journal of molecular sciences.

[114]  James R. Brown,et al.  Evolution of two-component signal transduction. , 2000, Molecular biology and evolution.

[115]  Peter J Kennelly,et al.  Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. , 2002, FEMS microbiology letters.

[116]  Patrick Forterre,et al.  Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification , 2013, Nucleic acids research.

[117]  K. Burnside,et al.  Regulation of prokaryotic gene expression by eukaryotic-like enzymes. , 2012, Current opinion in microbiology.

[118]  E. Mathur,et al.  Molecular Cloning and Functional Expression of a Protein-Serine / Threonine Phosphatase from the Hyperthermophilic Archaeon Pyrodictium abyssi TAG 11 , 1997 .

[119]  B. Siebers,et al.  Atypical protein kinases of the RIO family in archaea. , 2013, Biochemical Society transactions.

[120]  C. Ponting,et al.  Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. , 1999, Journal of molecular biology.

[121]  R. Bourret,et al.  Two-component signal transduction. , 2010, Current opinion in microbiology.

[122]  Thijs J. G. Ettema,et al.  The archaeal 'TACK' superphylum and the origin of eukaryotes. , 2011, Trends in microbiology.

[123]  Zheng-Guo He,et al.  Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. , 2011, Biochemical and biophysical research communications.

[124]  Susan S. Taylor,et al.  Three protein kinase structures define a common motif. , 1994, Structure.

[125]  E. Hurt,et al.  Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes , 2014, Nucleic acids research.

[126]  Ivan Mijakovic,et al.  Evolution of Bacterial Protein-Tyrosine Kinases and Their Relaxed Specificity Toward Substrates , 2014, Genome biology and evolution.

[127]  P. Kennelly,et al.  A PPM-family protein phosphatase from the thermoacidophile Thermoplasma volcanium hydrolyzes protein-bound phosphotyrosine , 2009, Extremophiles.

[128]  Gerard Manning,et al.  Structural and Functional Diversity of the Microbial Kinome , 2007, PLoS biology.

[129]  Michael Y. Galperin,et al.  A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts , 2005, BMC Microbiology.

[130]  Lei S. Qi,et al.  Characterization of an Archaeal Two-Component System That Regulates Methanogenesis in Methanosaeta harundinacea , 2014, PloS one.

[131]  N. LaRonde The Ancient Microbial RIO Kinases* , 2014, The Journal of Biological Chemistry.

[132]  M. Kimura,et al.  In Vitro Phosphorylation of Initiation Factor 2α (aIF2α) from Hyperthermophilic Archaeon Pyrococcus horikoshii OT3 , 2004 .

[133]  H. Nothaft,et al.  Protein glycosylation in bacteria: sweeter than ever , 2010, Nature Reviews Microbiology.

[134]  P. Kennelly,et al.  Gene cloning and expression and characterization of a toxin-sensitive protein phosphatase from the methanogenic archaeon Methanosarcina thermophila TM-1 , 1997, Journal of bacteriology.

[135]  W. Ellington,et al.  Evolution and physiological roles of phosphagen systems. , 2001, Annual review of physiology.

[136]  P. Kennelly,et al.  The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. , 1998, FEMS microbiology reviews.

[137]  J. Maupin-Furlow,et al.  Posttranslational Modification of the 20S Proteasomal Proteins of the Archaeon Haloferax volcanii , 2006, Journal of bacteriology.

[138]  R. Wirth,et al.  Molecular analysis of the crenarchaeal flagellum , 2012, Molecular microbiology.

[139]  Ivan Mijakovic,et al.  Protein phosphorylation in bacterial signal transduction. , 2011, Biochimica et biophysica acta.

[140]  V. Rubio,et al.  The mechanism of signal transduction by two-component systems. , 2010, Current opinion in structural biology.

[141]  J. Rudolph,et al.  Deletion analysis of the che operon in the archaeon Halobacterium salinarium. , 1996, Journal of molecular biology.

[142]  K. Jarrell,et al.  The archaellum: how Archaea swim , 2015, Front. Microbiol..

[143]  P. Gleizes,et al.  Late Cytoplasmic Maturation of the Small Ribosomal Subunit Requires RIO Proteins in Saccharomyces cerevisiae , 2003, Molecular and Cellular Biology.

[144]  S. Albers,et al.  The archaeal cell envelope , 2011, Nature Reviews Microbiology.

[145]  Luke E. Ulrich,et al.  One-component systems dominate signal transduction in prokaryotes. , 2005, Trends in microbiology.

[146]  M. Ashby Distribution, structure and diversity of "bacterial" genes encoding two-component proteins in the Euryarchaeota. , 2006, Archaea.

[147]  P. Kennelly,et al.  Archaeal phosphoproteins. Identification of a hexosephosphate mutase and the α‐subunit of succinyl‐CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus , 1998, Protein science : a publication of the Protein Society.

[148]  G. Carignani,et al.  Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. , 2004, The Biochemical journal.

[149]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[150]  Toshiyuki Yamamoto,et al.  CONFLICT OF INTEREST: None declared. , 2013 .

[151]  D. Koshland,et al.  Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. , 1978, The Journal of biological chemistry.

[152]  H R Matthews,et al.  Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. , 1995, Pharmacology & therapeutics.

[153]  Susan S. Taylor,et al.  Regulation of protein kinases; controlling activity through activation segment conformation. , 2004, Molecular cell.

[154]  A. Buchowiecka Puzzling over protein cysteine phosphorylation--assessment of proteomic tools for S-phosphorylation profiling. , 2014, The Analyst.

[155]  E. Geiduschek,et al.  Archaeal transcription and its regulators , 2005, Molecular microbiology.

[156]  P. Gleizes,et al.  Processing of 20S pre‐rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non‐ribosomal cytoplasmic protein , 2001, The EMBO journal.

[157]  David Lydall,et al.  A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator , 2006, Cell.

[158]  E. Mathur,et al.  Molecular Cloning and Functional Expression of a Protein-Serine/Threonine Phosphatase from the Hyperthermophilic Archaeon Pyrodictium abyssi TAG11 , 1998, Journal of bacteriology.

[159]  L. Johnson,et al.  Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. , 2001, Molecular cell.

[160]  L. Pellegrini,et al.  Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius , 2015, Nature Communications.

[161]  R. Kümmerli,et al.  Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms , 2015, Nature Communications.

[162]  Jeremy P Hunt,et al.  A Phosphohexomutase from the Archaeon Sulfolobus solfataricus Is Covalently Modified by Phosphorylation on Serine , 2005, Journal of bacteriology.

[163]  A. Macario,et al.  Transcription in the Archaea: Basal Factors, Regulation, and Stress-Gene Expression , 2002, Critical reviews in biochemistry and molecular biology.

[164]  D. Oesterhelt,et al.  Morphology, function and isolation of halobacterial flagella. , 1984, Journal of molecular biology.

[165]  Patricia P. Chan,et al.  Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences , 2011, Extremophiles.

[166]  A. Wlodawer,et al.  Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide–metal ion complexes , 2005, The FEBS journal.

[167]  S. Chervitz,et al.  The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. , 1997, Annual review of cell and developmental biology.

[168]  Michael Y. Galperin,et al.  Bacterial signal transduction network in a genomic perspective. , 2004, Environmental microbiology.

[169]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[170]  Y. Ishihama,et al.  Close proximity of phosphorylation sites to ligand in the phosphoproteome of the extreme thermophile Thermus thermophilus HB8 , 2012, Proteomics.

[171]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[172]  P. Kennelly,et al.  The Archaeon Sulfolobus solfataricusContains a Membrane-Associated Protein Kinase Activity That Preferentially Phosphorylates Threonine Residues In Vitro , 2000, Journal of bacteriology.

[173]  Judith P. Armitage,et al.  Two-Component Systems and Their Co-Option for Eukaryotic Signal Transduction , 2011, Current Biology.

[174]  Rolf Bernander,et al.  Archaeal Signal Transduction: Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius* , 2013, Molecular & Cellular Proteomics.

[175]  Thijs J. G. Ettema,et al.  Regulation of archaella expression by the FHA and von Willebrand domain‐containing proteins ArnA and ArnB in Sulfolobus acidocaldarius , 2012, Molecular microbiology.

[176]  S. Albers,et al.  The one‐component system ArnR: a membrane‐bound activator of the crenarchaeal archaellum , 2013, Molecular microbiology.

[177]  Michael T Laub,et al.  Evolution of two-component signal transduction systems. , 2012, Annual review of microbiology.

[178]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[179]  M. Simon,et al.  Cloning of the C-terminal cytoplasmic fragment of the tar protein and effects of the fragment on chemotaxis of Escherichia coli , 1988, Journal of bacteriology.