The optimal P3M algorithm for computing electrostatic energies in periodic systems.

We optimize Hockney and Eastwood's particle-particle particle-mesh algorithm to achieve maximal accuracy in the electrostatic energies (instead of forces) in three-dimensional periodic charged systems. To this end we construct an optimal influence function that minimizes the root-mean-square (rms) errors of the energies. As a by-product we derive a new real-space cutoff correction term, give a transparent derivation of the systematic errors in terms of Madelung energies, and provide an accurate analytical estimate for the rms error of the energies. This error estimate is a useful indicator of the accuracy of the computed energies and allows an easy and precise determination of the optimal values of the various parameters in the algorithm (Ewald splitting parameter, mesh size, and charge assignment order).

[1]  Gerhard Hummer,et al.  The hydration free energy of water , 1995 .

[2]  M. Deserno,et al.  HOW TO MESH UP EWALD SUMS. II. AN ACCURATE ERROR ESTIMATE FOR THE PARTICLE-PARTICLE-PARTICLE-MESH ALGORITHM , 1998, cond-mat/9807100.

[3]  V. Ballenegger,et al.  Structure and dielectric properties of polar fluids with extended dipoles: results from numerical simulations , 2003, cond-mat/0311654.

[4]  Axel Arnold,et al.  Efficient methods to compute long-range interactions for soft matter systems , 2005 .

[5]  Lee G. Pedersen,et al.  Ionic charging free energies: Spherical versus periodic boundary conditions , 1998 .

[6]  T. Ruijgrok,et al.  On the energy per particle in three- and two-dimensional Wigner lattices , 1988 .

[7]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[8]  Michael Buchanan Hooper Computational methods in classical and quantum physics , 1976 .

[9]  J. Hansen,et al.  Dielectric permittivity profiles of confined polar fluids. , 2005, The Journal of chemical physics.

[10]  Gerhard Hummer,et al.  Simulation and Theory of Electrostatic Interactions in Solution: Computational Chemistry, Biophysics and Aqueous Solutions, Santa Fe, New Mexico, U. S. A., 23-25 June 1999 , 1999 .

[11]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[12]  E. R. Smith Electrostatic potentials for simulations of thin layers , 1988 .

[13]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[14]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[15]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[16]  J. W. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. II. Equivalence of boundary conditions , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[18]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[19]  J. Caillol,et al.  Comments on the numerical simulations of electrolytes in periodic boundary conditions , 1994 .

[20]  Gerhard Hummer,et al.  Molecular Theories and Simulation of Ions and Polar Molecules in Water , 1998 .

[21]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[22]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[23]  Lee G. Pedersen,et al.  Long-range electrostatic effects in biomolecular simulations , 1997 .

[24]  J. Kirkwood The Dielectric Polarization of Polar Liquids , 1939 .

[25]  Celeste Sagui,et al.  P3M and PME: A comparison of the two methods , 1999 .

[26]  E. Teller,et al.  Monte Carlo Study of a One‐Component Plasma. I , 1966 .

[27]  A. Alastuey,et al.  Statistical mechanics of dipolar fluids: dielectric constant and sample shape , 2000 .

[28]  Wilfred F. van Gunsteren,et al.  Lattice‐sum methods for calculating electrostatic interactions in molecular simulations , 1995 .

[29]  Christian Holm,et al.  Estimate of the Cutoff Errors in the Ewald Summation for Dipolar Systems , 2001 .

[30]  R. W. Hockney,et al.  A 10000 particle molecular dynamics model with long range forces , 1973 .

[31]  J. Perram,et al.  Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems , 1992 .

[32]  K. Kremer,et al.  Advanced Computer Simulation Approaches for Soft Matter Sciences III , 2005 .