Fabrication of p-channel heterostructure field effect transistors with polarization-induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces

Novel nitride-based heterostructures have been fabricated demonstrating two-dimensional hole gases as the basis for p-channel transistors. The carrier density in the 2DHG is adjusted between very high values of 2 × 1013 cm−2 and low values of 6 × 1011 cm−2 by the polarization difference, ΔP, between quaternary AlInGaN backbarriers and a GaN channel on top. Record mobilities for holes in GaN of 43 cm2 V−1 s−1 (median 30 cm2 V−1 s−1) are observed for a moderate 2DHG density of 1.3 × 1012 cm−2 (median 2.2 × 1012 cm−2). Heterostructures with different backbarrier compositions are processed to field effect transistors and show a systematic threshold voltage shift from positive to negative values according to the corresponding 2DHG density. It is shown for the first time that by appropriate polarization-engineering through changing the AlInGaN composition, both depletion and enhancement mode behaviour can be achieved for p-channel devices. Drain current densities |Id| above 40 mA mm−1 at a drain source voltage Vds of −10 V are achieved for heterostructures with high polarization differences, ΔP, between AlInGaN backbarrier and GaN channel. Reducing ΔP leads to decreasing on-state drain currents |Id| with a simultaneous reduction in off-state current. This results in very large on/off ratios of up to 108 for enhancement mode devices, demonstrating record performances and great potential for future applications.

[1]  George T. Wang,et al.  Nature of the parasitic chemistry during AlGaInN OMVPE , 2004 .

[2]  Umesh K. Mishra,et al.  ENHANCED MG DOPING EFFICIENCY IN AL0.2GA0.8N/GAN SUPERLATTICES , 1999 .

[3]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[4]  Michael S. Shur,et al.  Accumulation Hole Layer in p-GaN/AlGaN Heterostructures , 2000 .

[5]  R. H. Jansen,et al.  Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates , 2010 .

[6]  Tanakorn Osotchan,et al.  Electron mobilities in gallium, indium, and aluminum nitrides , 1994 .

[7]  T. Andersson,et al.  Two-dimensional electron mobility limitation mechanisms in Al x Ga 1-x N/GaN heterostructures , 2005 .

[8]  N. Shibata,et al.  Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN , 1998 .

[9]  A. Yamamoto,et al.  Mg doping behavior of MOVPE InxGa1−xN (x∼0.4) , 2009 .

[10]  Kwiseon Kim,et al.  Effective masses and valence-band splittings in GaN and AlN , 1997 .

[11]  T. Fisher,et al.  Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors , 2000 .

[12]  Daniel D. Koleske,et al.  In situ measurements of the critical thickness for strain relaxation in AlGaN∕GaN heterostructures , 2004 .

[13]  A. Carlo,et al.  EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.

[14]  Rong Zhang,et al.  Field-effect transistors based on two-dimensional materials for logic applications , 2013 .

[15]  B. Holländer,et al.  Polarization-Engineered Enhancement-Mode High-Electron-Mobility Transistors Using Quaternary AlInGaN Barrier Layers , 2013, Journal of Electronic Materials.

[16]  A. Vescan,et al.  Quaternary nitride enhancement mode HFET with 260 mS/mm and a threshold voltage of +0.5 V , 2012, 70th Device Research Conference.

[17]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[18]  E. Suh,et al.  Structural and Optical Properties of In-Rich InAlGaN/InGaN Heterostructures for White Light Emission , 2008 .

[19]  Keisuke Shinohara,et al.  Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications , 2013, IEEE Transactions on Electron Devices.

[20]  M. Kunzer,et al.  Self-compensation in Mg doped p-type GaN grown by MOCVD , 1998 .

[21]  Y. Lin,et al.  Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers , 2001 .

[22]  K. Köhler,et al.  Hole conductivity and compensation in epitaxial GaN:Mg layers , 2000 .

[23]  P. Yu,et al.  Effects of the gas ambient in thermal activation of Mg-doped p-GaN on Hall effect and photoluminescence , 2013 .

[24]  H. Iwai,et al.  Temperature-Independent Two-Dimensional Hole Gas Confined at GaN/AlGaN Heterointerface , 2013 .

[25]  A. Dabiran,et al.  Improved Mobilities and Resistivities in Modulation-Doped P-type AlGaN / GaN Superlattices , 2001 .

[26]  Suzuki,et al.  First-principles calculations of effective-mass parameters of AlN and GaN. , 1995, Physical review. B, Condensed matter.

[27]  Daniel D. Koleske,et al.  Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN , 2002 .

[28]  K. Kumakura,et al.  Enhanced Hole Generation in Mg-Doped AlGaN/GaN Superlattices Due to Piezoelectric Field , 1999 .

[29]  Kinam Kim,et al.  1.6kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device , 2012, 2012 24th International Symposium on Power Semiconductor Devices and ICs.

[30]  B. Holländer,et al.  New high-precision 5-axes RBS/channeling goniometer for ion beam analysis of 150 mm ∅ wafers , 2000 .

[31]  Y. Ohba,et al.  A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition , 1994 .

[32]  Holger Kalisch,et al.  First Small-Signal Data of GaN-Based p-Channel Heterostructure Field Effect Transistors , 2013 .

[33]  B. Holländer,et al.  Growth Studies on Quaternary AlInGaN Layers for HEMT Application , 2012, Journal of Electronic Materials.

[34]  B. Holländer,et al.  Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy , 2012 .

[35]  Yu Cao,et al.  Polarization-Induced GaN-on-Insulator E/D Mode p-Channel Heterostructure FETs , 2013, IEEE Electron Device Letters.

[36]  Shiro Sakai,et al.  Characterization of Mg-doped GaN grown by metalorganic chemical vapor deposition , 2000 .

[37]  Michael Heuken,et al.  p-Channel Enhancement and Depletion Mode GaN-Based HFETs With Quaternary Backbarriers , 2013, IEEE Transactions on Electron Devices.

[38]  J. W. Graff,et al.  Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices , 2001 .

[39]  T. Seong,et al.  Ohmic-Contact Technology for GaN-Based Light-Emitting Diodes: Role of P-Type Contact , 2010, IEEE Transactions on Electron Devices.

[40]  The Influence of Growth Conditions on the Electrical Properties of Magnesium-Doped GaN Grown by MOVPE , 1999 .

[41]  E. Kohn,et al.  P-channel InGaN-HFET structure based on polarization doping , 2004, IEEE Electron Device Letters.

[42]  E. M. Sankara Narayanan,et al.  High Density Two-Dimensional Hole Gas Induced by Negative Polarization at GaN/AlGaN Heterointerface , 2010 .

[43]  S. Denbaars,et al.  Heavy doping effects in Mg-doped GaN , 2000 .

[44]  G. Simin,et al.  GaN/AlGaN p-channel inverted heterostructure JFET , 2002, IEEE Electron Device Letters.

[45]  Ho Won Jang,et al.  Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN , 2003 .

[46]  O. Ambacher,et al.  First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET , 2012 .

[47]  Holger Kalisch,et al.  Recessed-Gate Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistors on Si with Record DC Performance , 2011 .