Computation of Limit Cycles and Their Isochrons: Fast Algorithms and Their Convergence

We present efficient algorithms to compute limit cycles and their isochrons (i.e., the sets of points with the same asymptotic phase) for planar vector fields. We formulate a functional equation for the parameterization of the invariant cycle and its isochrons, and we show that it can be solved by means of a Newton method. Using the right transformations, we can solve the equation of the Newton step efficiently. The algorithms are efficient in the sense that if we discretize the functions using $N$ points, a Newton step requires $O(N)$ storage and $O(N\log N)$ operations in Fourier discretization or $O(N)$ operations in other discretizations. We prove convergence of the algorithms and present a validation theorem in an a posteriori format. That is, we show that if there is an approximate solution of the invariance equation that satisfies some some mild nondegeneracy conditions, then there is a true solution nearby. Thus, our main theorem can be used to validate numerically computed solutions. The theorem ...

[1]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[2]  L. Ahlfors Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .

[3]  Gemma Huguet,et al.  A Computational and Geometric Approach to Phase Resetting Curves and Surfaces , 2009, SIAM J. Appl. Dyn. Syst..

[4]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[5]  I. Mezić,et al.  On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. , 2012, Chaos.

[6]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[7]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[8]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[9]  C. Simó On the analytical and numerical approximation of invariant manifolds. , 1990 .

[10]  Jeff Moehlis,et al.  Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..

[11]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[12]  Philip Holmes,et al.  A Minimal Model of a Central Pattern Generator and Motoneurons for Insect Locomotion , 2004, SIAM J. Appl. Dyn. Syst..

[13]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[14]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[15]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[16]  W. Rudin Real and complex analysis , 1968 .

[17]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[18]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[19]  A. Guillamón,et al.  Phase-Amplitude Response Functions for Transient-State Stimuli , 2013, Journal of mathematical neuroscience.

[20]  John Guckenheimer,et al.  Dissecting the Phase Response of a Model Bursting Neuron , 2009, SIAM J. Appl. Dyn. Syst..

[21]  Rafael de la Llave,et al.  A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .

[22]  R. Broucke,et al.  A programming system for analytical series expansions on a computer , 1969 .

[23]  D. Takeshita,et al.  Higher order approximation of isochrons , 2009, 0910.3890.

[24]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[25]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[26]  À. Haro,et al.  AUTOMATIC DIFFERENTIATION TOOLS IN COMPUTATIONAL DYNAMICAL SYSTEMS , 2008 .

[27]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[28]  B. M. Fulk MATH , 1992 .

[29]  Avinoam Rabinovitch,et al.  Fixed points of two-dimensional maps obtained under rapid stimulations , 2006 .

[30]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[31]  J. Clunie Analytic Functions , 1962, Nature.

[32]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[33]  A. Winfree Patterns of phase compromise in biological cycles , 1974 .

[34]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[35]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[36]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[37]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[38]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[39]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[40]  Carmen C. Canavier,et al.  Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved , 2008, Journal of Computational Neuroscience.

[41]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[42]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[43]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[44]  L. Trefethen,et al.  Chebfun: A New Kind of Numerical Computing , 2010 .

[45]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[46]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[47]  K. Fernow New York , 1896, American Potato Journal.

[48]  Stephen Coombes,et al.  Phase-Amplitude Descriptions of Neural Oscillator Models , 2013, Journal of mathematical neuroscience.

[49]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1991, Nature.