Chaos Identification and Prediction Methods

Considerable interest in studying the chaotic behavior of natural, physical, and socio-economic systems have led to the development of many different methods for identification and prediction of chaos. An important commonality among almost all of these methods is the concept of phase space reconstruction. Other than this, the methods largely have different bases and approaches and often aim to identify different measures of chaos. All these methods have been successfully applied in many different scientific fields. This chapter describes some of the most popular methods for chaos identification and prediction, especially those that have found applications in hydrology. These methods include: phase space reconstruction, correlation dimension method, false nearest neighbor method, Lyapunov exponent method, Kolmogorov entropy method, surrogate data method, Poincare maps, close returns plot, and nonlinear local approximation prediction method. To put the utility of these methods in a proper perspective in the identification of chaos, the superiority of two of these methods (phase space reconstruction and correlation dimension) over two commonly used linear tools for system identification (autocorrelation function and power spectrum) is also demonstrated. Further, as the correlation dimension method has been the most widely used method for chaos identification, it is discussed in far more detail.

[1]  Christopher J. Keylock,et al.  A wavelet-based method for surrogate data generation , 2007 .

[2]  Ronny Berndtsson,et al.  Reply to “Which chaos in the rainfall-runoff process?” , 2002 .

[3]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[4]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[5]  Thomas Schreiber,et al.  EFFICIENT NEIGHBOR SEARCHING IN NONLINEAR TIME SERIES ANALYSIS , 1995 .

[6]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[7]  Anastasios A. Tsonis,et al.  Nonlinear Prediction, Chaos, and Noise. , 1992 .

[8]  Pengcheng Xu,et al.  Modified correlation entropy estimation for a noisy chaotic time series. , 2010, Chaos.

[9]  C. Diks Nonlinear time series analysis , 1999 .

[10]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[11]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[12]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[13]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[14]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[15]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[16]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[17]  Bellie Sivakumar,et al.  Correlation dimension estimation of hydrological series and data size requirement: myth and reality/Estimation de la dimension de corrélation de séries hydrologiques et taille nécessaire du jeu de données: mythe et réalité , 2005 .

[18]  Holger Kantz,et al.  Enlarged scaling ranges for the KS-entropy and the information dimension. , 1996, Chaos.

[19]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[20]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[21]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[22]  Thomas Schreiber,et al.  Constrained Randomization of Time Series Data , 1998, chao-dyn/9909042.

[23]  Shie-Yui Liong,et al.  Practical Inverse Approach for Forecasting Nonlinear Hydrological Time Series , 2002 .

[24]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[25]  L. Young,et al.  Dimension, entropy and Lyapunov exponents in differentiable dynamical systems , 1984 .

[26]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[27]  Bellie Sivakumar,et al.  Hydrologic complexity and classification: a simple data reconstruction approach , 2007 .

[28]  H. Abarbanel,et al.  Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  F. Takens Detecting strange attractors in turbulence , 1981 .

[30]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[31]  Rice,et al.  Method of false nearest neighbors: A cautionary note. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[33]  Bellie Sivakumar,et al.  Rainfall dynamics at different temporal scales: A chaotic perspective , 2001 .

[34]  Bellie Sivakumar,et al.  Chaos theory in hydrology: important issues and interpretations , 2000 .

[35]  J. Havstad,et al.  Attractor dimension of nonstationary dynamical systems from small data sets. , 1989, Physical review. A, General physics.

[36]  P. Grassberger An optimized box-assisted algorithm for fractal dimensions , 1990 .

[37]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[38]  Les attracteurs étranges , 2020, La théorie du chaos en images.

[39]  Upmanu Lall,et al.  Nonlinear Dynamics of the Great Salt Lake: Dimension Estimation , 1996 .

[40]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[41]  Sivan Toledo,et al.  A vectorized algorithm for correlation dimension estimation , 1997 .

[42]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[43]  Klaus Fraedrich,et al.  Estimating the Dimensions of Weather and Climate Attractors , 1986 .

[44]  J. Elsner,et al.  Nonlinear prediction as a way of distinguishing chaos from random fractal sequences , 1992, Nature.

[45]  M. Breakspear,et al.  Construction of multivariate surrogate sets from nonlinear data using the wavelet transform , 2003 .

[46]  T Aittokallio,et al.  Improving the false nearest neighbors method with graphical analysis. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Dimitris Kugiumtzis,et al.  On the Reliability of the surrogate Data Test for nonlinearity in the Analysis of noisy Time Series , 2001, Int. J. Bifurc. Chaos.

[48]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[50]  Shie-Yui Liong,et al.  A systematic approach to noise reduction in chaotic hydrological time series , 1999 .

[51]  Tohru Ikeguchi,et al.  Algorithms for generating surrogate data for sparsely quantized time series , 2007 .

[52]  Manfred Morari,et al.  False-nearest-neighbors algorithm and noise-corrupted time series , 1997 .

[53]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[54]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[55]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[56]  T. Schreiber,et al.  Discrimination power of measures for nonlinearity in a time series , 1997, chao-dyn/9909043.

[57]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[58]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[59]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[60]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[61]  Magnus Persson,et al.  Is correlation dimension a reliable indicator of low‐dimensional chaos in short hydrological time series? , 2002 .

[62]  D. Ruelle Five turbulent problems , 1983 .

[63]  Peter Grassberger,et al.  Entropy estimation of symbol sequences. , 1996, Chaos.

[64]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[65]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[66]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[67]  A. Corana Adaptive box-assisted algorithm for correlation-dimension estimation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  S. Ramdani,et al.  Detecting determinism in short time series using a quantified averaged false nearest neighbors approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[70]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[71]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[72]  R Hegger,et al.  Improved false nearest neighbor method to detect determinism in time series data. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[74]  Konstantine P. Georgakakos,et al.  Estimating the Dimension of Weather and Climate Attractors: Important Issues about the Procedure and Interpretation , 1993 .

[75]  Claire G. Gilmore,et al.  A new test for chaos , 1993 .

[76]  P. Xu,et al.  Neighbourhood selection for local modelling and prediction of hydrological time series , 2002 .

[77]  Ralf Engbert Testing for nonlinearity: the role of surrogate data , 2002 .

[78]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[79]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[80]  A. D. Kirwan,et al.  An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables , 1994 .

[81]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[82]  Farrell,et al.  Characterizing attractors using local intrinsic dimensions calculated by singular-value decomposition and information-theoretic criteria. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[83]  Haye Hinrichsen,et al.  Entropy estimates of small data sets , 2008, 0804.4561.

[84]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[85]  A. Mees,et al.  Dynamics from multivariate time series , 1998 .

[86]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .