An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three

We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph G=Gn,mi¾?i¾?3. In this model G is drawn uniformly from graphs with vertex set [n], m edges and minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently large then our algorithm runs in On1+o1 time and succeeds w.h.p. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 73-98, 2015

[1]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[3]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[4]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[5]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[6]  CheboluPrasad,et al.  Finding a maximum matching in a sparse random graph in O(n) expected time , 2010 .

[7]  Alan M. Frieze,et al.  On a greedy 2‐matching algorithm and Hamilton cycles in random graphs with minimum degree at least three , 2011, Random Struct. Algorithms.

[8]  T.I. Fenner,et al.  On the existence of Hamiltonian cycles in a class of random graphs , 1983, Discret. Math..

[9]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[10]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[11]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[12]  B. Pittel,et al.  On a sparse random graph with minimum degree three: Likely Pósa sets are large , 2011, 1107.4944.

[13]  B. Pittel,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998 .

[14]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[15]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[16]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[17]  Colin McDiarmid Concentration For Independent Permutations , 2002, Comb. Probab. Comput..

[18]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[19]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[20]  János Komlós,et al.  Limit distribution for the existence of Hamiltonian cycles in a random graph , 2006, Discret. Math..