Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans

Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture.

[1]  Patrick R Hof,et al.  Broca's area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. , 2009, Cerebral cortex.

[2]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[3]  D. Pandya,et al.  Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2009, Cerebral cortex.

[4]  Richard E. Passingham,et al.  Is the Prefrontal Cortex Especially Enlarged in the Human Brain? Allometric Relations and Remapping Factors , 2014, Brain, Behavior and Evolution.

[5]  M. Jenkinson,et al.  Non-linear optimisation FMRIB Technial Report TR 07 JA 1 , 2007 .

[6]  J. Rilling,et al.  Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. , 2013, Cerebral cortex.

[7]  Satoshi Hirata,et al.  Humans and chimpanzees attend differently to goal-directed actions. , 2012, Nature communications.

[8]  S. Stone-Elander,et al.  Motor learning in man: a positron emission tomographic study. , 1990, Neuroreport.

[9]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[10]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[11]  Scott H. Johnson-Frey What's So Special about Human Tool Use? , 2003, Neuron.

[12]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[13]  Warren S. McCulloch,et al.  The isocortex of the chimpanzee. , 1950 .

[14]  Michael Erb,et al.  Perisylvian white matter connectivity in the human right hemisphere , 2009, BMC Neuroscience.

[15]  Alex M. Andrew,et al.  Imitation in Animals and Artifacts , 2003 .

[16]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[17]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[18]  Volkmar Glauche,et al.  Ventral and dorsal fiber systems for imagined and executed movement , 2012, Experimental Brain Research.

[19]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[20]  Rw Byrne The maker not the tool: The cognitive significance of great ape manual skills , 2005 .

[21]  E. Koechlin,et al.  Serial Organization of Human Behavior in the Inferior Parietal Cortex , 2007, The Journal of Neuroscience.

[22]  R. Seitz,et al.  Diversity of the inferior frontal gyrus—A meta-analysis of neuroimaging studies , 2011, Behavioural Brain Research.

[23]  T. Chaminade,et al.  The evolutionary neuroscience of tool making , 2007, Neuropsychologia.

[24]  Bernard Wood,et al.  Older than the Oldowan? Rethinking the emergence of hominin tool use , 2003 .

[25]  Ashwin G Ramayya,et al.  A DTI investigation of neural substrates supporting tool use. , 2010, Cerebral cortex.

[26]  M. Tomasello,et al.  Imitative learning of actions on objects by children, chimpanzees, and enculturated chimpanzees. , 1993, Child development.

[27]  Giacomo Rizzolatti,et al.  Humans Mirror Neurons and Mirror Systems in Monkeys and , 2008 .

[28]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[29]  Guy A Orban,et al.  An area specifically devoted to tool use in human left inferior parietal lobule , 2012, Behavioral and Brain Sciences.

[30]  G VonBonin,et al.  The frontal lobe of primates; cytoarchitectural studies. , 1948 .

[31]  Aad van der Lugt,et al.  Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: A combined fMRI and DTI study , 2007, NeuroImage.

[32]  Michael Tomasello,et al.  Copying results and copying actions in the process of social learning: chimpanzees (Pan troglodytes) and human children (Homo sapiens) , 2005, Animal Cognition.

[33]  J. Hermsdörfer,et al.  It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices , 2005, Neuropsychologia.

[34]  C. Weiller,et al.  Fiber pathways connecting cortical areas relevant for spatial orienting and exploration , 2014, Human brain mapping.

[35]  Matthew F. Glasser,et al.  In vivo architectonics: A cortico-centric perspective , 2014, NeuroImage.

[36]  T. Chaminade,et al.  Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions , 2014, Brain Structure and Function.

[37]  T. Asamizuya,et al.  Gray and white matter changes associated with tool-use learning in macaque monkeys , 2009, Proceedings of the National Academy of Sciences.

[38]  D. Stout,et al.  Late Acheulean technology and cognition at Boxgrove, UK , 2014 .

[39]  S. Frey What Puts the How in Where? Tool Use and the Divided Visual Streams Hypothesis , 2007, Cortex.

[40]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[41]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[42]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[43]  Thomas Wynn,et al.  An Ape's View of the Oldowan , 1989 .

[44]  R. Seitz,et al.  Learning of Sequential Finger Movements in Man: A Combined Kinematic and Positron Emission Tomography (PET) Study , 1992, The European journal of neuroscience.

[45]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  S. Ichinose,et al.  Extension of Corticocortical Afferents into the Anterior Bank of the Intraparietal Sulcus by Tool-use Training in Adult Monkeys , 2005 .

[47]  Tetsuro Matsuzawa,et al.  The Mind of the Chimpanzee: Ecological and Experimental Perspectives , 2010 .

[48]  Juan Alvarez-Linera,et al.  THREE‐DIMENSIONAL MICROSURGICAL AND TRACTOGRAPHIC ANATOMY OF THE WHITE MATTER OF THE HUMAN BRAIN , 2008, Neurosurgery.

[49]  A. Whiten,et al.  Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens) , 2005, Animal Cognition.

[50]  D. Stout Stone toolmaking and the evolution of human culture and cognition , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[52]  Gereon R Fink,et al.  Left inferior parietal cortex integrates time and space during collision judgments , 2003, NeuroImage.

[53]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[54]  D. Stout Neuroscience of Technology , 2013 .

[55]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[56]  G. Orban,et al.  The Representation of Tool Use in Humans and Monkeys: Common and Uniquely Human Features , 2009, The Journal of Neuroscience.

[57]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[58]  Xiaoping Hu,et al.  Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study , 2010, PloS one.

[59]  Masayuki Hyodo,et al.  The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia , 2013, Proceedings of the National Academy of Sciences.

[60]  G. Orban,et al.  Parietal Representation of Symbolic and Nonsymbolic Magnitude , 2003, Journal of Cognitive Neuroscience.

[61]  Thomas Wynn,et al.  “An ape's view of the Oldowan” revisited , 2011, Evolutionary anthropology.

[62]  C. Groves,et al.  Estimating the phylogeny and divergence times of primates using a supermatrix approach , 2009, BMC Evolutionary Biology.

[63]  Guy A Orban,et al.  Differences in Neural Activation for Object-Directed Grasping in Chimpanzees and Humans , 2013, The Journal of Neuroscience.

[64]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[65]  C. Groves,et al.  Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. , 1998, Molecular phylogenetics and evolution.

[66]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[67]  G. Rizzolatti,et al.  Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5). , 1998, Novartis Foundation symposium.

[68]  V. Walsh,et al.  The parietal cortex and the representation of time, space, number and other magnitudes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[69]  R. Gur,et al.  Leftward asymmetry in relative fiber density of the arcuate fasciculus , 2005, Neuroreport.

[70]  Lydia M. Hopper,et al.  Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[72]  Susan Bowsfield The Symbolic Species: The Co-Evolution of Language and the Brain , 2004 .

[73]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[74]  R. Passingham,et al.  Technology, expertise and social cognition in human evolution , 2011, The European journal of neuroscience.

[75]  J. Fuster Frontal lobes , 1993, Current Opinion in Neurobiology.

[76]  J. Rilling,et al.  Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes , 2013, Neurobiology of Aging.

[77]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[78]  Leonardo Fogassi,et al.  Mirror Neurons Responding to Observation of Actions Made with Tools in Monkey Ventral Premotor Cortex , 2005, Journal of Cognitive Neuroscience.

[79]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex: one decade on , 2014, Trends in Cognitive Sciences.

[80]  Michael J. Rogers,et al.  2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. , 2003, Journal of human evolution.

[81]  Massimo Silvetti,et al.  Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection. , 2012, Cerebral cortex.

[82]  E. Visalberghi,et al.  “Language” and intelligence in monkeys and apes: Do monkeys ape? , 1990 .

[83]  Brian B. Avants,et al.  Regional and Hemispheric Variation in Cortical Thickness in Chimpanzees (Pan troglodytes) , 2013, The Journal of Neuroscience.

[84]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[85]  T. Chaminade,et al.  Stone tools, language and the brain in human evolution , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[86]  P. Bailey,et al.  Concerning cytoarchitecture of the frontal lobe of chimpanzee, Pan satyrus and man, Homo sapiens. , 1948, Research publications - Association for Research in Nervous and Mental Disease.

[87]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[88]  Katrin Amunts,et al.  A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca's area in humans and great apes , 2008, The Journal of comparative neurology.

[89]  G. Rizzolatti,et al.  Mirror neurons and mirror systems in monkeys and humans. , 2008, Physiology.

[90]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[91]  T. Chaminade,et al.  Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  Atsushi Iriki,et al.  Functional Organization of Monkey Brain for Abstract Operation , 2007, Cortex.

[93]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[94]  M. Catani,et al.  Monkey to human comparative anatomy of the frontal lobe association tracts , 2012, Cortex.

[95]  Derek K. Jonesa,et al.  Controversies White matter integrity , fi ber count , and other fallacies : The do ' s and don ' ts of diffusion MRI , 2012 .

[96]  Karl Zilles,et al.  Frontal White Matter Volume Is Associated with Brain Enlargement and Higher Structural Connectivity in Anthropoid Primates , 2010, PloS one.

[97]  Satoshi Hirata,et al.  The Mind of the Chimpanzee: Ecological and Experimental Perspectives , 2010 .

[98]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[99]  Scott T. Grafton,et al.  Action outcomes are represented in human inferior frontoparietal cortex. , 2008, Cerebral cortex.

[100]  A. Wagner,et al.  Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating , 2011, Annals of the New York Academy of Sciences.

[101]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[102]  Matthew F Glasser,et al.  DTI tractography of the human brain's language pathways. , 2008, Cerebral cortex.

[103]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[104]  Susan Meyer Goldstein,et al.  Ten years after: Interference of hospital slack in process performance benefits of quality practices , 2012 .

[105]  J. Martino,et al.  Subcortical anatomy of the lateral association fascicles of the brain: A review , 2014, Clinical anatomy.

[106]  G. Bonin,et al.  The isocortex of man , 1951 .

[107]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[108]  William D Hopkins,et al.  Asymmetries of the parietal operculum in chimpanzees (Pan troglodytes) in relation to handedness for tool use. , 2013, Cerebral cortex.

[109]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[110]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[111]  H. Roche,et al.  An earlier origin for the Acheulian , 2011, Nature.

[112]  S. Swinnen,et al.  Dynamics of hemispheric specialization and integration in the context of motor control , 2006, Nature Reviews Neuroscience.

[113]  B. Bril,et al.  How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. , 2010, Journal of human evolution.

[114]  J. Rilling,et al.  Continuity, Divergence, and the Evolution of Brain Language Pathways , 2011, Front. Evol. Neurosci..

[115]  Thomas R. Barrick,et al.  Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection , 2008, NeuroImage.

[116]  T. Stanford,et al.  Stimulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in Working Memory Tasks , 2011, The Journal of Neuroscience.

[117]  T. Preuss The human brain: rewired and running hot , 2011, Annals of the New York Academy of Sciences.

[118]  J. Hornak,et al.  Visual neglect in the monkey. Representation and disconnection. , 1997, Brain : a journal of neurology.

[119]  D. Pandya,et al.  Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey , 2009, PLoS biology.

[120]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[121]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex , 2004, Trends in Cognitive Sciences.

[122]  Aldo Genovesio,et al.  Prefrontal–parietal function: from foraging to foresight , 2014, Trends in Cognitive Sciences.

[123]  L. Cosmides From : The Cognitive Neurosciences , 1995 .