The RNA polymerase III transcription apparatus.

[1]  P. Carbon,et al.  ZNF76 and ZNF143 Are Two Human Homologs of the Transcriptional Activator Staf* , 1998, The Journal of Biological Chemistry.

[2]  A. Sentenac,et al.  Mutations in the alpha‐amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. , 1996, The EMBO journal.

[3]  A. Wolffe,et al.  A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it , 1986, Cell.

[4]  E. Geiduschek,et al.  The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. , 1990, The EMBO journal.

[5]  R. Dickerson,et al.  How proteins recognize the TATA box. , 1996, Journal of molecular biology.

[6]  C. Schmid,et al.  p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner , 1996, Molecular and cellular biology.

[7]  D. Broccoli,et al.  Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2 , 1997, Nature Genetics.

[8]  I. Willis,et al.  Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. , 2001, Molecular cell.

[9]  R. Kingston,et al.  ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. , 1999, Genes & development.

[10]  Luis Moroder,et al.  Structure of TPR Domain–Peptide Complexes Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine , 2000, Cell.

[11]  Robert Tjian,et al.  Transcription Properties of a Cell Type–Specific TATA-Binding Protein, TRF , 1997, Cell.

[12]  Michel Werner,et al.  2 Yeast RNA Polymerase Subunits and Genes , 1992 .

[13]  N. Hernandez,et al.  A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIB fraction , 1992, Cell.

[14]  P. Thuriaux,et al.  A protein-protein interaction map of yeast RNA polymerase III. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Maraia,et al.  Recognition of Nascent RNA by the Human La Antigen: Conserved and Divergent Features of Structure and Function , 2001, Molecular and Cellular Biology.

[16]  E. Geiduschek,et al.  TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts , 1995, Molecular and cellular biology.

[17]  D. Brow,et al.  Lethal mutations in a yeast U6 RNA gene B block promoter element identify essential contacts with transcription factor-IIIC , 1995, The Journal of Biological Chemistry.

[18]  A. Sentenac,et al.  A suppressor of mutations in the class III transcription system encodes a component of yeast TFIIIB. , 1996, The EMBO journal.

[19]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[20]  L. Gu,et al.  The Retinoblastoma Tumor Suppressor Protein Targets Distinct General Transcription Factors To Regulate RNA Polymerase III Gene Expression , 2000, Molecular and Cellular Biology.

[21]  A. Das,et al.  Intrinsic transcript cleavage activity of RNA polymerase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Shuman,et al.  Nascent RNA cleavage by purified ternary complexes of vaccinia RNA polymerase. , 1993, The Journal of biological chemistry.

[23]  E. Geiduschek,et al.  Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes , 1994, Molecular and cellular biology.

[24]  B. Chait,et al.  Human TATA-binding protein-related factor-2 (hTRF2) stably associates with hTFIIA in HeLa cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Bogenhagen,et al.  Nucleotide sequences in Xenopus 5S DNA required for transcription termination , 1981, Cell.

[26]  B. Brophy,et al.  Conserved functional domains of the RNA polymerase III general transcription factor BRF. , 1994, Genes & development.

[27]  P. Carbon,et al.  Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III , 1997, The EMBO journal.

[28]  D. Söll,et al.  Functional analysis of fractionated Drosophila Kc cell tRNA gene transcription components. , 1985, The Journal of biological chemistry.

[29]  C. Turnbough,et al.  Regulation of carAB Expression inEscherichia coli Occurs in Part through UTP-Sensitive Reiterative Transcription , 1998, Journal of bacteriology.

[30]  E. Geiduschek,et al.  Bending of the Saccharomyces cerevisiae 5S rRNA gene in transcription factor complexes. , 1992, The Journal of biological chemistry.

[31]  M. Johnston,et al.  tRNA genes as transcriptional repressor elements , 1994, Molecular and cellular biology.

[32]  A. Sentenac,et al.  TFIIIC relieves repression of U6 snRNA transcription by chromatin , 1993, Nature.

[33]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[34]  B. Hall,et al.  Effects of alterations in the 3′ flanking sequence on in vivo and in vitro expression of the yeast SUP4‐o tRNATyr gene. , 1985, The EMBO journal.

[35]  E. Geiduschek,et al.  The Brf and TATA-binding Protein Subunits of the RNA Polymerase III Transcription Factor IIIB Mediate Position-specific Integration of the Gypsy-like Element, Ty3* , 2000, The Journal of Biological Chemistry.

[36]  R. Young,et al.  RNA Polymerase II Holoenzymes and Subcomplexes* , 1998, The Journal of Biological Chemistry.

[37]  B. M. Honda,et al.  Differential Expression of Individual Suppressor tRNATrp Gene Family Members In Vitro and In Vivo in the Nematode Caenorhabditis elegans , 1998, Molecular and Cellular Biology.

[38]  I. Willis,et al.  A differential response of wild type and mutant promoters to TFIIIB70 overexpression in vivo and in vitro. , 1998, Nucleic acids research.

[39]  E. Geiduschek,et al.  Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. , 1996, Genes & development.

[40]  L. Phan,et al.  Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. , 2000, Molecular cell.

[41]  R. Maraia,et al.  Transcription Termination by RNA Polymerase III in Fission Yeast , 2000, The Journal of Biological Chemistry.

[42]  N. Cozzarelli,et al.  Purified RNA polymerase III accurately and efficiently terminates transcription of 5s RNA genes , 1983, Cell.

[43]  M. Chamberlin,et al.  Basic mechanisms of transcript elongation and its regulation. , 1997, Annual review of biochemistry.

[44]  A. Sentenac,et al.  Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. , 1999, Journal of molecular biology.

[45]  R. Roeder,et al.  An RNA Polymerase III-defective Mutation in TATA-binding Protein Disrupts Its Interaction with a Transcription Factor IIIB Subunit inDrosophila Cells* , 1997, The Journal of Biological Chemistry.

[46]  D. Shippen,et al.  Identification of an essential proximal sequence element in the promoter of the telomerase RNA gene of Tetrahymena thermophila. , 1999, Nucleic acids research.

[47]  D. Reines,et al.  Transcription elongation factor SII , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  E. Geiduschek,et al.  Formation of open and elongating transcription complexes by RNA polymerase III. , 1992, Journal of molecular biology.

[49]  P. Sigler,et al.  Crystal Structure of the Yeast TFIIA/TBP/DNA Complex , 1996, Science.

[50]  I. Willis,et al.  Repression of Ribosome and tRNA Synthesis in Secretion-Defective Cells Is Signaled by a Novel Branch of the Cell Integrity Pathway , 2000, Molecular and Cellular Biology.

[51]  N. Hernandez,et al.  Characterization of a Trimeric Complex Containing Oct-1, SNAPc, and DNA* , 1997, The Journal of Biological Chemistry.

[52]  S. Jackson,et al.  Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. , 1998, Molecular cell.

[53]  B. Hall,et al.  Substrate Specificity of the RNase Activity of Yeast RNA Polymerase III* , 1997, The Journal of Biological Chemistry.

[54]  A. Sentenac,et al.  Dual role of the C34 subunit of RNA polymerase III in transcription initiation , 1997, The EMBO journal.

[55]  P. Carbon,et al.  Flexible Zinc Finger Requirement for Binding of the Transcriptional Activator Staf to U6 Small Nuclear RNA and tRNASec Promoters* , 1999, The Journal of Biological Chemistry.

[56]  P. Thuriaux,et al.  Cross Talk between tRNA and rRNA Synthesis inSaccharomyces cerevisiae , 2001, Molecular and Cellular Biology.

[57]  K. Seifart,et al.  Physical separation of two different forms of human TFIIIB active in the transcription of the U6 or the VAI gene in vitro. , 1995, The EMBO journal.

[58]  C. Carles,et al.  The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. , 1998, Genes & development.

[59]  N. Hernandez,et al.  SNAP(c): a core promoter factor with a built-in DNA-binding damper that is deactivated by the Oct-1 POU domain. , 1999, Genes & development.

[60]  C. Peterson,et al.  Regulation of the RNA Polymerase I and III Transcription Systems in Response to Growth Conditions* , 1996, The Journal of Biological Chemistry.

[61]  P. Carbon,et al.  Maximization of Selenocysteine tRNA and U6 Small Nuclear RNA Transcriptional Activation Achieved by Flexible Utilization of a Staf Zinc Finger* , 1999, The Journal of Biological Chemistry.

[62]  N. Baliga,et al.  Is gene expression in Halobacterium NRC‐1 regulated by multiple TBP and TFB transcription factors? , 2000, Molecular microbiology.

[63]  K. Seifart,et al.  The activity binding to the termination region of several pol III genes represents a separate entity and is distinct from a novel component enhancing U6 snRNA transcription. , 1998, Nucleic acids research.

[64]  D. Rubinson,et al.  U snRNP assembly in yeast involves the La protein , 2000, The EMBO journal.

[65]  E. Geiduschek,et al.  Probing close DNA contacts of RNA polymerase III transcription complexes with the photoactive nucleoside 4-thiodeoxythymidine. , 1994, The Journal of biological chemistry.

[66]  S. Sandmeyer,et al.  Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element , 1995, Science.

[67]  Ying Huang,et al.  Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. , 2001, Nucleic acids research.

[68]  K. U. Sprague,et al.  Silk gland-specific tRNA(Ala) genes interact more weakly than constitutive tRNA(Ala) genes with silkworm TFIIIB and polymerase III fractions , 1994, Molecular and cellular biology.

[69]  Z. Wang,et al.  TFIIIC1 acts through a downstream region to stabilize TFIIIC2 binding to RNA polymerase III promoters , 1996, Molecular and cellular biology.

[70]  E. Geiduschek,et al.  Engines of gene expression , 2000, Nature Structural Biology.

[71]  R. Kamakaka,et al.  RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae , 2001, The EMBO journal.

[72]  R. W. Henry,et al.  Crossing the line between RNA polymerases , 1998 .

[73]  M. Rudd,et al.  The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Burley,et al.  Crystal structure of a TFIIB–TBP–TATA-element ternary complex , 1995, Nature.

[75]  A. Sentenac,et al.  Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. , 1995, Genes & development.

[76]  D. Engelke,et al.  Genomic footprinting of a yeast tRNA gene reveals stable complexes over the 5'-flanking region , 1989, Molecular and cellular biology.

[77]  H. Feldmann,et al.  tRNA genes and retroelements in the yeast genome. , 1998, Nucleic acids research.

[78]  E. Geiduschek,et al.  Orientation and topography of RNA polymerase III in transcription complexes , 1993, Molecular and cellular biology.

[79]  Ying Huang,et al.  Isolation and Cloning of Four Subunits of a Fission Yeast TFIIIC Complex That Includes an Ortholog of the Human Regulatory Protein TFIIICβ* , 2000, The Journal of Biological Chemistry.

[80]  D. Barford,et al.  The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein–protein interactions , 1998, The EMBO journal.

[81]  V. Kickhoefer,et al.  The rat vault RNA gene contains a unique RNA polymerase III promoter composed of both external and internal elements that function synergistically. , 1994, The Journal of biological chemistry.

[82]  P. Thuriaux,et al.  τ91, an Essential Subunit of Yeast Transcription Factor IIIC, Cooperates with τ138 in DNA Binding , 1998, Molecular and Cellular Biology.

[83]  S. Hahn,et al.  The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. , 2000, Genes & development.

[84]  K. Seifart,et al.  A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene , 1997, Molecular and cellular biology.

[85]  I. Willis,et al.  In Vitro Evidence for Growth Regulation of tRNA Gene Transcription in Yeast , 1995, The Journal of Biological Chemistry.

[86]  K. U. Sprague,et al.  Silkworm TFIIIB binds both constitutive and silk gland-specific tRNA Ala promoters but protects only the constitutive promoter from DNase I cleavage , 1996, Molecular and cellular biology.

[87]  D. Jackson,et al.  Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III , 1999, The EMBO journal.

[88]  Z. Wang,et al.  Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes , 1995, Molecular and cellular biology.

[89]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[90]  N. Hernandez,et al.  Role for the Amino-Terminal Region of Human TBP in U6 snRNA Transcription , 1997, Science.

[91]  T Lagrange,et al.  New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. , 1998, Genes & development.

[92]  K. Struhl Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes , 1999, Cell.

[93]  A. Sentenac,et al.  On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. , 1993, The Journal of biological chemistry.

[94]  E. Geiduschek,et al.  The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening , 2001, The EMBO journal.

[95]  Grant J. Jensen,et al.  Yeast RNA Polymerase II at 5 Å Resolution , 1999, Cell.

[96]  R. Tjian,et al.  TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  W. Herr,et al.  The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc , 1996, Molecular and cellular biology.

[98]  G. Almouzni,et al.  Global Transcription Regulators of Eukaryotes , 1999, Cell.

[99]  A. Sentenac,et al.  Interaction between Yeast RNA Polymerase III and Transcription Factor TFIIIC via ABC10α and τ131 Subunits* , 1999, The Journal of Biological Chemistry.

[100]  R. White Transcription factor IIIB: An important determinant of biosynthetic capacity that is targeted by tumour suppressors and transforming proteins. , 1998, International journal of oncology.

[101]  I. Willis,et al.  A mutation in the second largest subunit of TFIIIC increases a rate-limiting step in transcription by RNA polymerase III , 1994, Molecular and cellular biology.

[102]  R. Roeder,et al.  Cloning and Characterization of Two Evolutionarily Conserved Subunits (TFIIIC102 and TFIIIC63) of Human TFIIIC and Their Involvement in Functional Interactions with TFIIIB and RNA Polymerase III , 1999, Molecular and Cellular Biology.

[103]  D. Chalker,et al.  Ty3 integrates within the region of RNA polymerase III transcription initiation. , 1992, Genes & development.

[104]  R. Young,et al.  Regulation of gene expression by TBP-associated proteins. , 1998, Genes & development.

[105]  A. Berk,et al.  Purification and characterization of transcription factor IIIC2. , 1989, The Journal of biological chemistry.

[106]  R. Kobayashi,et al.  SNAP19 mediates the assembly of a functional core promoter complex (SNAPc) shared by RNA polymerases II and III. , 1998, Genes & development.

[107]  R. Aebersold,et al.  Human transcription factor IIIC box B binding subunit. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[108]  D. Engelke,et al.  A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  E. Geiduschek,et al.  Functional and Structural Organization of Brf, the TFIIB-Related Component of the RNA Polymerase III Transcription Initiation Complex , 1998, Molecular and Cellular Biology.

[110]  C. Carles,et al.  A Novel Subunit of Yeast RNA Polymerase III Interacts with the TFIIB-Related Domain of TFIIIB70 , 2000, Molecular and Cellular Biology.

[111]  F. Bushman,et al.  Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[112]  E. Geiduschek,et al.  Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes , 1989, Molecular and cellular biology.

[113]  R. Maraia,et al.  Terminator-specific Recycling of a B1-AluTranscription Complex by RNA Polymerase III Is Mediated by the RNA Terminus-binding Protein La* , 1998, The Journal of Biological Chemistry.

[114]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[115]  Z. Wang,et al.  Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. U. Sprague,et al.  TATA-Binding Protein–TATA Interaction Is a Key Determinant of Differential Transcription of Silkworm Constitutive and Silk Gland-Specific tRNAAla Genes , 2000, Molecular and Cellular Biology.

[117]  A. Sentenac,et al.  Facilitated Recycling Pathway for RNA Polymerase III , 1996, Cell.

[118]  B. Bartholomew,et al.  Probing the protein-DNA contacts of a yeast RNA polymerase III transcription complex in a crude extract: solid phase synthesis of DNA photoaffinity probes containing a novel photoreactive deoxycytidine analog. , 1996, Biochemistry.

[119]  E. Geiduschek,et al.  S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors , 1990, Cell.

[120]  M. Ptashne,et al.  Activators and targets , 1990, Nature.

[121]  A. Berk TBP-like Factors Come into Focus , 2000, Cell.

[122]  R. W. Henry,et al.  Crossing the line between RNA polymerases: transcription of human snRNA genes by RNA polymerases II and III. , 1998, Cold Spring Harbor symposia on quantitative biology.

[123]  P. Dehaseth,et al.  Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. , 1999, Biochemistry.

[124]  A. Sentenac,et al.  Functional interchangeability of TFIIIB components from yeast and human cells in vitro , 1997, The EMBO journal.

[125]  A. Ghavidel,et al.  Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. , 1997, Genes & development.

[126]  E. Geiduschek,et al.  Two essential components of the Saccharomyces cerevisiae transcription factor TFIIIB: transcription and DNA-binding properties. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[127]  E. Geiduschek,et al.  Analysis of RNA chain elongation and termination by Saccharomyces cerevisiae RNA polymerase III. , 1994, Journal of molecular biology.

[128]  I. Willis,et al.  Interactions between the Tetratricopeptide Repeat-containing Transcription Factor TFIIIC131 and Its Ligand, TFIIIB70 , 2000, The Journal of Biological Chemistry.

[129]  Z. Wang,et al.  Cloning and characterization of a TFIIIC2 subunit (TFIIIC beta) whose presence correlates with activation of RNA polymerase III-mediated transcription by adenovirus E1A expression and serum factors. , 1995, Genes & development.

[130]  D. Engelke,et al.  Nucleolar localization of early tRNA processing. , 1998, Genes & development.

[131]  C. Carles,et al.  The TFIIIB-assembling subunit of yeast transcription factor TFIIIC has both tetratricopeptide repeats and basic helix-loop-helix motifs. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[132]  P. Carbon,et al.  Transcription of the Xenopus laevis selenocysteine tRNA(Ser)Sec gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. , 1991, The EMBO journal.

[133]  Z. Wang,et al.  Cloning and characterization of the beta subunit of human proximal sequence element-binding transcription factor and its involvement in transcription of small nuclear RNA genes by RNA polymerases II and III , 1996, Molecular and cellular biology.

[134]  R. Kobayashi,et al.  The Large Subunit of Basal Transcription Factor SNAPc Is a Myb Domain Protein That Interacts with Oct-1 , 1998, Molecular and Cellular Biology.

[135]  N. Hernandez,et al.  Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. , 2000, Genes & development.

[136]  D. Voytas,et al.  Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.

[137]  A. Lassar,et al.  Transcription of class III genes: formation of preinitiation complexes. , 1983, Science.

[138]  R. Kobayashi,et al.  RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB , 1996, Molecular and cellular biology.

[139]  S. Wolin,et al.  A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts , 1998, The EMBO journal.

[140]  B. Hamkalo,et al.  High resolution mapping of Xenopus laevis 5S and ribosomal RNA genes by EM in situ hybridization. , 1990, Cytometry.

[141]  J. E. Sutcliffe,et al.  RNA Polymerase III Transcription Factor IIIB Is a Target for Repression by Pocket Proteins p107 and p130 , 1999, Molecular and Cellular Biology.

[142]  J. Gottesfeld,et al.  TATA-box DNA binding activity and subunit composition for RNA polymerase III transcription factor IIIB from Xenopus laevis , 1996, Molecular and cellular biology.

[143]  Steven Hahn,et al.  Crystal structure of a yeast TBP/TATA-box complex , 1993, Nature.

[144]  B. Bartholomew,et al.  Mapping the Contacts of Yeast TFIIIB and RNA Polymerase III at Various Distances from the Major Groove of DNA by DNA Photoaffinity Labeling* , 1996, The Journal of Biological Chemistry.

[145]  K. U. Sprague,et al.  Upstream sequences confer distinctive transcriptional properties on genes encoding silkgland-specific tRNAAla. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[146]  L. J. Peck,et al.  Enhancer of RNA polymerase III gene transcription. , 1999, Nucleic acids research.

[147]  M. C. Parsons,et al.  Cloning of TFC1, the Saccharomyces cerevisiae gene encoding the 95-kDa subunit of transcription factor TFIIIC. , 1992, The Journal of biological chemistry.

[148]  A. Sentenac,et al.  A Subunit of Yeast TFIIIC Participates in the Recruitment of TATA-Binding Protein , 1999, Molecular and Cellular Biology.

[149]  R. Roeder,et al.  Cloning and characterization of an evolutionarily divergent DNA-binding subunit of mammalian TFIIIC , 1994, Molecular and cellular biology.

[150]  E. Wingender,et al.  Association of RNA polymerase III with transcription factors in the absence of DNA. , 1986, The Journal of biological chemistry.

[151]  C. Larminie,et al.  Identification of a putative BRF homologue in the genome of Caenorhabditis elegans. , 1998, DNA sequence : the journal of DNA sequencing and mapping.

[152]  P. A. Weil,et al.  Purification and characterization of Saccharomyces cerevisiae transcription factor TFIIIC. Polypeptide composition defined with polyclonal antibodies. , 1990, The Journal of biological chemistry.

[153]  B. Bartholomew,et al.  Survey of four different photoreactive moieties for DNA photoaffinity labeling of yeast RNA polymerase III transcription complexes. , 1998, Nucleic acids research.

[154]  F. Bushman,et al.  HIV-1 cDNA Integration: Requirement of HMG I(Y) Protein for Function of Preintegration Complexes In Vitro , 1997, Cell.

[155]  T. Tamura,et al.  Identification of a mouse TBP-like protein (TLP) distantly related to the drosophila TBP-related factor. , 1999, Nucleic acids research.

[156]  J. Hixson,et al.  The distal elements, OCT and SPH, stimulate the formation of preinitiation complexes on a human U6 snRNA gene promoter in vitro. , 1998, Nucleic acids research.

[157]  G. Kassavetis,et al.  Repression of vertebrate RNA polymerase III transcription by DNA binding proteins located upstream from the transcription start site. , 1995, Journal of molecular biology.

[158]  William Arbuthnot Sir Lane,et al.  Cloning and Functional Characterization of the Gene Encoding the TFIIIB90 Subunit of RNA Polymerase III Transcription Factor TFIIIB* , 1996, The Journal of Biological Chemistry.

[159]  Z. Wang,et al.  Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. , 1997, Genes & development.

[160]  S. Burley,et al.  Radical mutations reveal TATA-box binding protein surfaces required for activated transcription in vivo. , 1996, Genes & development.

[161]  A. Sentenac,et al.  The two DNA‐binding domains of yeast transcription factor tau as observed by scanning transmission electron microscopy. , 1989, The EMBO journal.

[162]  R. Kobayashi,et al.  Cloning and characterization of SNAP50, a subunit of the snRNA‐activating protein complex SNAPc. , 1996, The EMBO journal.

[163]  A. Berk,et al.  Resolution of human transcription factor TFIIIC into two functional components. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[164]  C. Carles,et al.  Isolation of TFC1, a gene encoding one of two DNA-binding subunits of yeast transcription factor tau (TFIIIC). , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[165]  Steven Hahn,et al.  Architecture of Protein and DNA Contacts within the TFIIIB-DNA Complex , 1998, Molecular and Cellular Biology.

[166]  A. Berk,et al.  Polymerase (Pol) III TATA Box-Binding Protein (TBP)-Associated Factor Brf Binds to a Surface on TBP Also Required for Activated Pol II Transcription , 1998, Molecular and Cellular Biology.

[167]  D. Brow,et al.  Architecture of a yeast U6 RNA gene promoter. , 1993, Molecular and cellular biology.

[168]  R. Roeder,et al.  Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. , 1992, Molecular and cellular biology.

[169]  K. U. Sprague Transcription of Eukaryotic tRNA Genes , 1995 .

[170]  D. Bogenhagen,et al.  A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3′ border of the region , 1980, Cell.

[171]  Z. Wang,et al.  DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. , 1998, Molecular cell.

[172]  R. Tjian,et al.  A TRF1:BRF Complex Directs Drosophila RNA Polymerase III Transcription , 2000, Cell.

[173]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[174]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[175]  E. Geiduschek,et al.  Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC , 1991, Molecular and cellular biology.

[176]  A. Sentenac,et al.  Complex Interactions between Yeast TFIIIB and TFIIIC (*) , 1995, The Journal of Biological Chemistry.

[177]  I. Willis,et al.  A tetratricopeptide repeat mutation in yeast transcription factor IIIC131 (TFIIIC131) facilitates recruitment of TFIIB-related factor TFIIIB70 , 1997, Molecular and cellular biology.

[178]  Jeffrey W. Roberts,et al.  Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.

[179]  A. Sentenac,et al.  A Chimeric Subunit of Yeast Transcription Factor IIIC Forms a Subcomplex with τ95 , 1998, Molecular and Cellular Biology.

[180]  P. Carbon,et al.  Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. , 1995, The EMBO journal.

[181]  B. Tyler,et al.  Coordinate expression of ribosomal protein genes in Neurospora crassa and identification of conserved upstream sequences. , 1991, Nucleic acids research.

[182]  E. Geiduschek,et al.  Saccharomyces cerevisiae transcription factors IIIB and IIIC bend the DNA of a tRNA(Gln) gene. , 1991, The Journal of biological chemistry.

[183]  S. Bell,et al.  Orientation of the transcription preinitiation complex in archaea. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[184]  J. Gralla,et al.  Promoter opening via a DNA fork junction binding activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[185]  D. Engelke,et al.  5′ Processing of tRNA Precursors Can Be Modulated by the Human La Antigen Phosphoprotein , 1998, Molecular and Cellular Biology.

[186]  R. Roeder,et al.  The TFIIIC90 Subunit of TFIIIC Interacts with Multiple Components of the RNA Polymerase III Machinery and Contains a Histone-Specific Acetyltransferase Activity , 1999, Molecular and Cellular Biology.

[187]  E. Geiduschek,et al.  Alignment of the B" Subunit of RNA Polymerase III Transcription Factor IIIB in Its Promoter Complex* , 1999, The Journal of Biological Chemistry.

[188]  C. Carles,et al.  A Cryptic DNA Binding Domain at the COOH Terminus of TFIIIB70 Affects Formation, Stability, and Function of Preinitiation Complexes* , 1997, The Journal of Biological Chemistry.

[189]  Younggyu Kim,et al.  Structural Organization of the RNA Polymerase-Promoter Open Complex , 2000, Cell.

[190]  G. Kassavetis,et al.  Abortive Initiation by Saccharomyces cerevisiaeRNA Polymerase III* , 1999, The Journal of Biological Chemistry.

[191]  P. Thuriaux,et al.  A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. , 1995, The EMBO journal.

[192]  R. Roeder,et al.  Human TFIIIC Relieves Chromatin-Mediated Repression of RNA Polymerase III Transcription and Contains an Intrinsic Histone Acetyltransferase Activity , 1999, Molecular and Cellular Biology.

[193]  D. Guyer,et al.  In vivo analyses of upstream promoter sequence elements in the 5 S rRNA gene from Saccharomyces cerevisiae. , 1997, Journal of molecular biology.

[194]  E. Geiduschek,et al.  A post-recruitment function for the RNA polymerase III transcription-initiation factor IIIB. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[195]  T. Richmond,et al.  Crystal structure of a yeast TFIIA/TBP/DNA complex , 1996, Nature.

[196]  J. T. Kadonaga,et al.  Exploring the transcription-chromatin interface. , 2000, Genes & development.

[197]  D. Jahn,et al.  Purification of human transcription factor IIIC and its binding to the gene for ribosomal 5S RNA. , 1989, Nucleic acids research.

[198]  Robert J White,et al.  p53 is a general repressor of RNA polymerase III transcription , 1998, The EMBO journal.

[199]  K.,et al.  Hydrolytic cleavage of nascent RNA in RNA polymerase III ternary transcription complexes. , 1994, The Journal of biological chemistry.

[200]  E. Geiduschek,et al.  Functional dissection of the B" component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription , 1997, Molecular and cellular biology.

[201]  D. Reinberg,et al.  Differential regulation of RNA polymerases I, II, and III by the TBP-binding repressor Dr1. , 1994, Science.

[202]  C. Carles,et al.  TFC3: gene encoding the B-block binding subunit of the yeast transcription factor IIIC. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[203]  Z. Wang,et al.  Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. , 1997, Genes & development.

[204]  B. Hall,et al.  Mutational Analysis of the Hydrolytic Activity of Yeast RNA Polymerase III* , 1999, The Journal of Biological Chemistry.

[205]  M. Thomm Archaeal transcription factors and their role in transcription initiation. , 1996, FEMS microbiology reviews.

[206]  S. Ottonello,et al.  Selective Inactivation of Two Components of the Multiprotein Transcription Factor TFIIIB in Cycloheximide Growth-arrested Yeast Cells (*) , 1995, The Journal of Biological Chemistry.

[207]  G. Schroth,et al.  Protein and DNA requirements for the transcription factor IIIA-induced distortion of the 5 S rRNA gene promoter. , 1996, Journal of molecular biology.

[208]  A. Sentenac,et al.  Gene size differentially affects the binding of yeast transcription factor tau to two intragenic regions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[209]  R. Roeder,et al.  Cloning of two proximal sequence element-binding transcription factor subunits (gamma and delta) that are required for transcription of small nuclear RNA genes by RNA polymerases II and III and interact with the TATA-binding protein , 1996, Molecular and cellular biology.

[210]  S. Sandmeyer,et al.  RNA polymerase III interferes with Ty3 integration , 1997, FEBS letters.

[211]  E. Geiduschek,et al.  The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB , 1992, Cell.

[212]  D. Bushnell,et al.  Two-Dimensional Crystallography of TFIIB– and IIE–RNA Polymerase II Complexes: Implications for Start Site Selection and Initiation Complex Formation , 1996, Cell.

[213]  R. Ebright,et al.  Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[214]  W. Stumph,et al.  The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila U-snRNA genes. , 1998, Nucleic acids research.

[215]  J. Trauger,et al.  Minor groove DNA-protein contacts upstream of a tRNA gene detected with a synthetic DNA binding ligand. , 1999, Journal of molecular biology.

[216]  B. M. Honda,et al.  5'-flanking sequences required for efficient transcription in vitro of 5S RNA genes, in the related nematodes Caenorhabditis elegans and Caenorhabditis briggsae. , 1998, Gene.

[217]  S Sandmeyer Targeting transposition: at home in the genome. , 1998, Genome research.

[218]  R. Roeder,et al.  Nuclear factor 1 (NF1) affects accurate termination and multiple‐round transcription by human RNA polymerase III , 2000, The EMBO journal.

[219]  G. Kunkel,et al.  Molecular cloning of a cDNA encoding human SPH-binding factor, a conserved protein that binds to the enhancer-like region of the U6 small nuclear RNA gene promoter. , 1998, Nucleic acids research.

[220]  K. Seifart,et al.  hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way. , 1998, Journal of molecular biology.

[221]  J. Qin,et al.  Phosphorylation of the Human La Antigen on Serine 366 Can Regulate Recycling of RNA Polymerase III Transcription Complexes , 1997, Cell.

[222]  C. Carles,et al.  The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. , 1998, Cold Spring Harbor symposia on quantitative biology.

[223]  B. Bartholomew,et al.  Spatial Organization of the Core Region of Yeast TFIIIB-DNA Complexes , 1999, Molecular and Cellular Biology.

[224]  E. Geiduschek,et al.  A minimal RNA polymerase III transcription system , 1999, The EMBO journal.

[225]  J. Ruppert,et al.  Alternatively spliced hBRF variants function at different RNA polymerase III promoters , 2000, The EMBO journal.

[226]  C. Schmid,et al.  RNA Polymerase III Transcription Repressed by Rb through Its Interactions with TFIIIB and TFIIIC2* , 1997, The Journal of Biological Chemistry.

[227]  Z. Wang,et al.  A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[228]  E. Geiduschek,et al.  Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. , 1992, Journal of molecular biology.

[229]  R. Maraia Transcription termination factor La is also an initiation factor for RNA polymerase III. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[230]  S. Hahn,et al.  TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. , 1995, Genes & development.

[231]  K. Seifart,et al.  Human transcription factors IIIC2 , IIIC1 and a novel component IIIC0 fulfil different aspects of DNA binding to various pol III genes. , 1997, Nucleic acids research.

[232]  A. Sentenac,et al.  High-Mobility-Group Proteins NHP6A and NHP6B Participate in Activation of the RNA Polymerase IIISNR6 Gene , 2001, Molecular and Cellular Biology.

[233]  M. Birnstiel,et al.  Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements , 1981, Nature.

[234]  A. Sentenac,et al.  Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. , 1993, The Journal of biological chemistry.

[235]  T. Pederson,et al.  Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. , 1988, Genes & development.

[236]  E. Geiduschek,et al.  Transcription factor IIIB: the architecture of its DNA complex, and its roles in initiation of transcription by RNA polymerase III. , 1998, Cold Spring Harbor symposia on quantitative biology.

[237]  J. E. Sutcliffe,et al.  Retinoblastoma Protein Disrupts Interactions Required for RNA Polymerase III Transcription , 2000, Molecular and Cellular Biology.

[238]  E. Blackburn,et al.  In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs , 1990, Nature.

[239]  J. Roberts,et al.  Promoter recognition as measured by binding of polymerase to nontemplate strand oligonucleotide. , 1997, Science.

[240]  J. T. Kadonaga,et al.  The “Dark Side” of Chromatin Remodeling Repressive Effects on Transcription , 1999, Cell.

[241]  E. Geiduschek,et al.  The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site. , 1999, Journal of molecular biology.

[242]  J. Keene,et al.  Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III , 1994, Molecular and cellular biology.

[243]  S. Clarkson,et al.  Efficient synthesis, termination and release of RNA polymerase III transcripts in Xenopus extracts depleted of La protein , 1998, The EMBO journal.

[244]  A. Sentenac,et al.  Selective proteolysis defines two DNA binding domains in yeast transcription factor τ , 1986, Nature.

[245]  S. Bell,et al.  Transcription in Archaea. , 1998, Cold Spring Harbor symposia on quantitative biology.